4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Discrimination Abilities and Parasitism Success of Pupal Parasitoids Towards Spotted-Wing Drosophila Pupae Previously Parasitized by the Larval Parasitoid Ganaspis brasiliensis (Hymenoptera: Figitidae)

      , , ,
      Environmental Entomology
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pachycrepoideus vindemiae (Rondani) (Hymenoptera: Pteromalidae) and Trichopria drosophilae (Perkins) (Hymenoptera: Diapriidae) are two cosmopolitan and generalist pupal parasitoids that are among a few of the resident parasitoids in North America capable of attacking Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), an invasive pest of small and soft fruit crops worldwide. Ganaspis brasiliensis (Ihering) is a specialist larval parasitoid of D. suzukii that was recently approved for biological control introduction against D. suzukii in the USA. As a solitary koinobiont species, G. brasiliensis oviposits in the host larva but emerges as an adult from the host puparium. This study investigated the discrimination ability and parasitism success by the pupal parasitoids towards D. suzukii pupae previously parasitized by G. brasiliensis, to examine whether interactions with resident parasitoids will affect G. brasiliensis after it is released in the USA. We found preliminary evidence that neither pupal parasitoid could discriminate towards D. suzukii pupae parasitized by early instars of G. brasiliensis. Pachycrepoideus vindemiae was able to successfully develop on D. suzukii pupae containing all preimaginal stages of G. brasiliensis, although parasitism success was significantly higher on those bearing later rather than early stages of G. brasiliensis. Trichopria drosophilae was only able to successfully develop on D. suzukii puparia containing early instars of G. brasiliensis. These results suggest that D. suzukii parasitized by the larval parasitoid could be subsequently attacked by the pupal parasitoids, possibly affecting the success of G. brasiliensis releases.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Competitive displacement among insects and arachnids.

          Competitive displacement is the most severe outcome of interspecific competition. For the purposes of this review, we define this type of displacement as the removal of a formerly established species from a habitat as a result of direct or indirect competitive interactions with another species. We reviewed the literature for recent putative cases of competitive displacement among insects and arachnids and assessed the evidence for the role of interspecific competition in these displacements. We found evidence for mechanisms of both exploitation and interference competition operating in these cases of competitive displacement. Many of the cases that we identified involve the operation of more than one competitive mechanism, and many cases were mediated by other noncompetitive factors. Most, but not all, of these displacements occurred between closely related species. In the majority of cases, exotic species displaced native species or previously established exotic species, often in anthropogenically-altered habitats. The cases that we identified have occurred across a broad range of taxa and environments. Therefore we suggest that competitive displacement has the potential to be a widespread phenomenon, and the frequency of these displacement events may increase, given the ever-increasing degree of anthropogenic changes to the environment. A greater awareness of competitive displacement events should lead to more studies documenting the relative importance of key factors and developing hypotheses that explain observed patterns.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intrinsic inter- and intraspecific competition in parasitoid wasps.

              Immature development of parasitoid wasps is restricted to resources found in a single host that is often similar in size to the adult parasitoid. When two or more parasitoids of the same or different species attack the same host, there is competition for monopolization of host resources. The success of intrinsic competition differs between parasitoids attacking growing hosts and parasitoids attacking paralyzed hosts. Furthermore, the evolution of gregarious development in parasitoids reflects differences in various developmental and behavioral traits, as these influence antagonistic encounters among immature parasitoids. Fitness-related costs (or benefits) of competition for the winning parasitoid reveal that time lags between successive attacks influence the outcome of competition. Physiological mechanisms used to exclude competitors include physical and biochemical factors that originate with the ovipositing female wasp or her progeny. In a broader multitrophic framework, indirect factors, such as plant quality, may affect parasitoids through effects on immunity and nutrition.
                Bookmark

                Author and article information

                Contributors
                Journal
                Environmental Entomology
                Oxford University Press (OUP)
                0046-225X
                1938-2936
                December 01 2022
                December 16 2022
                October 31 2022
                December 01 2022
                December 16 2022
                October 31 2022
                : 51
                : 6
                : 1106-1112
                Article
                10.1093/ee/nvac083
                36314997
                71d9086d-c327-418f-b54c-8e74625d64d3
                © 2022
                History

                Comments

                Comment on this article