49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fcγ Receptor–Mediated Phagocytosis in Macrophages Lacking the Src Family Tyrosine Kinases Hck, Fgr, and Lyn

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophage Fcγ receptors (FcγRs) mediate the uptake and destruction of antibody-coated viruses, bacteria, and parasites. We examined FcγR signaling and phagocytic function in bone marrow–derived macrophages from mutant mice lacking the major Src family kinases expressed in these cells, Hck, Fgr, and Lyn. Many FcγR-induced functional responses and signaling events were diminished or delayed in these macrophages, including immunoglobulin (Ig)G-coated erythrocyte phagocytosis, respiratory burst, actin cup formation, and activation of Syk, phosphatidylinositol 3-kinase, and extracellular signal–regulated kinases 1 and 2. Significant reduction of IgG-dependent phagocytosis was not seen in hck / fgr / − or lyn / − cells, although the single mutant lyn / − macrophages did manifest signaling defects. Thus, Src family kinases clearly have roles in two events leading to FcγR-mediated phagocytosis, one involving initiation of actin polymerization and the second involving activation of Syk and subsequent internalization. Since FcγR-mediated phagocytosis did occur at modest levels in a delayed fashion in triple mutant macrophages, these Src family kinases are not absolutely required for uptake of IgG-opsonized particles.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages

          Phosphoinositide 3-kinase (PI 3-kinase) has been implicated in growth factor signal transduction and vesicular membrane traffic. It is thought to mediate the earliest steps leading from ligation of cell surface receptors to increased cell surface ruffling. We show here that inhibitors of PI 3-kinase inhibit endocytosis in macrophages, not by interfering with the initiation of the process but rather by preventing its completion. Consistent with earlier studies, the inhibitors wortmannin and LY294002 inhibited fluid-phase pinocytosis and Fc receptor-mediated phagocytosis, but they had little effect on the receptor-mediated endocytosis of diI-labeled, acetylated, low density lipoprotein. Large solute probes of endocytosis reported greater inhibition by wortmannin than smaller probes did, indicating that macropinocytosis was affected more than micropinocytosis. Since macropinocytosis and phagocytosis are actin-mediated processes, we expected that their inhibition by wortmannin resulted from deficient signaling from macrophage colony-stimulating factor (M-CSF) receptors or Fc receptors to the actin cytoskeleton. However, video microscopy showed cell surface ruffling in wortmannin-treated cells, and increased ruffling after addition of M-CSF or phorbol myristate acetate. Quantitative measurements of video data reported slightly diminished ruffling in wortmannin-treated cells. Remarkably, the ruffles that formed in wortmannin-treated macrophages all receded into the cytoplasm without closing into macropinosomes. Similarly, wortmannin and LY294002 did not inhibit the extension of actin-rich pseudopodia along IgG- opsonized sheep erythrocytes, but instead prevented them from closing into phagosomes. These findings indicate that PI 3-kinase is not necessary for receptor-mediated stimulation of pseudopod extension, but rather functions in the closure of macropinosomes and phagosomes into intracellular organelles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway.

            c-Jun amino-terminal kinases (JNKs) and mitogen-activated protein kinases (MAPKs) are closely related; however, they are independently regulated by a variety of environmental stimuli. Although molecules linking growth factor receptors to MAPKs have been recently identified, little is known about pathways controlling JNK activation. Here, we show that in COS-7 cells, activated Ras effectively stimulates MAPK but poorly induces JNK activity. In contrast, mutationally activated Rac1 and Cdc42 GTPases potently activate JNK without affecting MAPK, and oncogenic guanine nucleotide exchange factors for these Rho-like proteins selectively stimulate JNK activity. Furthermore, expression of inhibitory molecules for Rho-related GTPases and dominant negative mutants of Rac1 and Cdc42 block JNK activation by oncogenic exchange factors or after induction by inflammatory cytokines and growth factors. Taken together, these findings strongly support a critical role for Rac1 and Cdc42 in controlling the JNK signaling pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipopolysaccharide (LPS)-induced Macrophage Activation and Signal Transduction in the Absence of Src-Family Kinases Hck, Fgr, and Lyn

              Lipopolysaccharide (LPS) stimulates immune responses by interacting with the membrane receptor CD14 to induce the generation of cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6. The mechanism by which the LPS signal is transduced from the extracellular environment to the nuclear compartment is not well defined. Recently, an increasing amount of evidence suggests that protein tyrosine kinases especially the Src-family kinases Hck, Fgr, and Lyn, play important roles in LPS signaling. To directly address the physiological function of Hck, Fgr and Lyn in LPS signaling, a genetic approach has been used to generate null mutations of all three kinases in a single mouse strain. hck −/− fgr −/− lyn −/− mice are moderately healthy and fertile; macrophages cultured from these mice express normal levels of CD14 and no other Src-family kinases were detected. Although the total protein phosphotyrosine level is greatly reduced in macrophages derived from hck −/− fgr −/− lyn −/− mice, functional analyses indicate that both elicited peritoneal (PEMs) and bone marrow–derived macrophages (BMDMs) from triple mutant mice have no major defects in LPS-induced activation. Nitrite production and cytokine secretion (IL-1, IL-6, and TNF-α) are normal or even enhanced in hck −/− fgr −/− lyn −/− macrophages after LPS stimulation. The development of tumor cell cytotoxicity is normal in triple mutant BMDMs and only partially impaired in PEMs after LPS stimulation. Furthermore, the activation of the ERK1/2 and JNK kinases, as well as the transcription factor NF-κB, are the same in normal and mutant macrophages after LPS stimulation. The current study provides direct evidence that three Src-family kinases Hck, Fgr, and Lyn are not obligatory for LPS-initiated signal transduction.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                21 February 2000
                : 191
                : 4
                : 669-682
                Affiliations
                [a ]From the Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California 94143
                [b ]From the George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143
                [c ]From the Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California 94143
                Article
                991738
                10.1084/jem.191.4.669
                2195832
                10684859
                72090f6c-5d56-4c06-a50d-32f72cd84d04
                © 2000 The Rockefeller University Press
                History
                : 30 September 1999
                : 20 December 1999
                : 22 December 1999
                Categories
                Original Article

                Medicine
                actin polymerization,phagocytosis,fcγ receptors,src family kinases,macrophage
                Medicine
                actin polymerization, phagocytosis, fcγ receptors, src family kinases, macrophage

                Comments

                Comment on this article