7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective role of integrin-linked kinase against oxidative stress and in maintenance of genomic integrity

      research-article
      1 , 2 , 3 , 1 , 2 , 3
      Oncotarget
      Impact Journals LLC
      oxidative stress, epidermis, integrin-linked kinase

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress in the pathogenesis of skin disease.

          Skin is the largest body organ that serves as an important environmental interface providing a protective envelope that is crucial for homeostasis. On the other hand, the skin is a major target for toxic insult by a broad spectrum of physical (i.e. UV radiation) and chemical (xenobiotic) agents that are capable of altering its structure and function. Many environmental pollutants are either themselves oxidants or catalyze the production of reactive oxygen species (ROS) directly or indirectly. ROS are believed to activate proliferative and cell survival signaling that can alter apoptotic pathways that may be involved in the pathogenesis of a number of skin disorders including photosensitivity diseases and some types of cutaneous malignancy. ROS act largely by driving several important molecular pathways that play important roles in diverse pathologic processes including ischemia-reperfusion injury, atherosclerosis, and inflammatory responses. The skin possesses an array of defense mechanisms that interact with toxicants to obviate their deleterious effect. These include non-enzymatic and enzymatic molecules that function as potent antioxidants or oxidant-degrading systems. Unfortunately, these homeostatic defenses, although highly effective, have limited capacity and can be overwhelmed thereby leading to increased ROS in the skin that can foster the development of dermatological diseases. One approach to preventing or treating these ROS-mediated disorders is based on the administration of various antioxidants in an effort to restore homeostasis. Although many antioxidants have shown substantive efficacy in cell culture systems and in animal models of oxidant injury, unequivocal confirmation of their beneficial effects in human populations has proven elusive.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase.

            Integrin-linked kinase (ILK) is an ankyrin-repeat containing serine-threonine protein kinase capable of interacting with the cytoplasmic domains of integrin beta1, beta2, and beta3 subunits. Overexpression of ILK in epithelial cells disrupts cell-extracellular matrix as well as cell-cell interactions, suppresses suspension-induced apoptosis (also called Anoikis), and stimulates anchorage-independent cell cycle progression. In addition, ILK induces nuclear translocation of beta-catenin, where the latter associates with a T cell factor/lymphocyte enhancer-binding factor 1 (TCF/LEF-1) to form an activated transcription factor. We now demonstrate that ILK activity is rapidly, but transiently, stimulated upon attachment of cells to fibronectin, as well as by insulin, in a phosphoinositide-3-OH kinase [Pi(3)K]-dependent manner. Furthermore, phosphatidylinositol(3,4,5)trisphosphate specifically stimulates the activity of ILK in vitro, and in addition, membrane targetted constitutively active Pi(3)K activates ILK in vivo. We also demonstrate here that ILK is an upstream effector of the Pi(3)K-dependent regulation of both protein kinase B (PKB/AKT) and glycogen synthase kinase 3 (GSK-3). Specifically, ILK can directly phosphorylate GSK-3 in vitro and when stably, or transiently, overexpressed in cells can inhibit GSK-3 activity, whereas the overexpression of kinase-deficient ILK enhances GSK-3 activity. In addition, kinase-active ILK can phosphorylate PKB/AKT on serine-473, whereas kinase-deficient ILK severely inhibits endogenous phosphorylation of PKB/AKT on serine-473, demonstrating that ILK is involved in agonist stimulated, Pi(3)K-dependent, PKB/AKT activation. ILK is thus a receptor-proximal effector for the Pi(3)K-dependent, extracellular matrix and growth factor mediated, activation of PKB/AKT, and inhibition of GSK-3.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate

              How the behaviour of somatic stem cells (SCs) is influenced by mechanical signals remains a black-box in cell biology. Here we show that YAP/TAZ regulation by cell shape and rigidity of the extracellular matrix (ECM) dictates a pivotal SC decision: to remain undifferentiated and grow, or to activate a terminal differentiation programme. Notably, mechano-activation of YAP/TAZ promotes epidermal stemness by inhibition of Notch signalling, a key factor for epidermal differentiation. Conversely, YAP/TAZ inhibition by low mechanical forces induces Notch signalling and loss of SC traits. As such, mechano-dependent regulation of YAP/TAZ reflects into mechano-dependent regulation of Notch signalling. Mechanistically, at least in part, this is mediated by YAP/TAZ binding to distant enhancers activating the expression of Delta-like ligands, serving as ‘in cis' inhibitors of Notch. Thus YAP/TAZ mechanotransduction integrates with cell–cell communication pathways for fine-grained orchestration of SC decisions.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                2 March 2018
                7 February 2018
                : 9
                : 17
                : 13637-13651
                Affiliations
                1 Department of Physiology and Pharmacology, The University of Western London, Ontario, Canada
                2 Lawson Health Research Institute, London, Ontario, Canada
                3 Children's Health Research Institute, London, Ontario, Canada
                Author notes
                Correspondence to: Lina Dagnino, ldagnino@ 123456uwo.ca
                Article
                24444
                10.18632/oncotarget.24444
                5862604
                29568383
                726d5990-0e71-4c59-9df7-97f58823e485
                Copyright: © 2018 Im et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 September 2017
                : 24 January 2018
                Categories
                Research Paper

                Oncology & Radiotherapy
                oxidative stress,epidermis,integrin-linked kinase
                Oncology & Radiotherapy
                oxidative stress, epidermis, integrin-linked kinase

                Comments

                Comment on this article