2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The dynamic interplay of bacteriophage, bacteria and the mammalian host during phage therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          For decades, biomedically centered studies of bacteria have focused on mechanistic drivers of disease in their mammalian hosts. Likewise, molecular studies of bacteriophage have centered on understanding mechanisms by which bacteriophage exploit the intracellular environment of their bacterial hosts. These binary interactions – bacteriophage infect bacteria and bacteria infect eukaryotic hosts – have remained largely separate lines of inquiry. However, recent evidence demonstrates how tripartite interactions between bacteriophage, bacteria and the eukaryotic host shape the dynamics and fate of each component. In this perspective, we provide an overview of different ways in which bacteriophage ecology modulates bacterial infections along a spectrum of positive to negative impacts on a mammalian host. We also examine how coevolutionary processes over longer timescales may change the valence of these interactions. We argue that anticipating both ecological and evolutionary dynamics is key to understand and control tripartite interactions and ultimately to the success or failure of phage therapy.

          Graphical abstract

          Abstract

          Immunology; Virology; Bacteriology; Evolutionary ecology.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

          (2022)
          Summary Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen–drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen–drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. Findings On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62–6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911–1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9–35·3), and lowest in Australasia, at 6·5 deaths (4·3–9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000–1 270 000) deaths attributable to AMR and 3·57 million (2·62–4·78) deaths associated with AMR in 2019. One pathogen–drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000–100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae. Interpretation To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen–drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut microbiota in human metabolic health and disease

            Observational findings achieved during the past two decades suggest that the intestinal microbiota may contribute to the metabolic health of the human host and, when aberrant, to the pathogenesis of various common metabolic disorders including obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic diseases and malnutrition. However, to gain a mechanistic understanding of how the gut microbiota affects host metabolism, research is moving from descriptive microbiota census analyses to cause-and-effect studies. Joint analyses of high-throughput human multi-omics data, including metagenomics and metabolomics data, together with measures of host physiology and mechanistic experiments in humans, animals and cells hold potential as initial steps in the identification of potential molecular mechanisms behind reported associations. In this Review, we discuss the current knowledge on how gut microbiota and derived microbial compounds may link to metabolism of the healthy host or to the pathogenesis of common metabolic diseases. We highlight examples of microbiota-targeted interventions aiming to optimize metabolic health, and we provide perspectives for future basic and translational investigations within the nascent and promising research field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recognition of microorganisms and activation of the immune response.

              The mammalian immune system has innate and adaptive components, which cooperate to protect the host against microbial infections. The innate immune system consists of functionally distinct 'modules' that evolved to provide different forms of protection against pathogens. It senses pathogens through pattern-recognition receptors, which trigger the activation of antimicrobial defences and stimulate the adaptive immune response. The adaptive immune system, in turn, activates innate effector mechanisms in an antigen-specific manner. The connections between the various immune components are not fully understood, but recent progress brings us closer to an integrated view of the immune system and its function in host defence.
                Bookmark

                Author and article information

                Contributors
                Journal
                iScience
                iScience
                iScience
                Elsevier
                2589-0042
                18 January 2023
                17 February 2023
                18 January 2023
                : 26
                : 2
                : 106004
                Affiliations
                [1 ]School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
                [2 ]Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
                [3 ]School of Biological Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
                [4 ]Institut de Biologie, École Normale Supérieure, 75005 Paris, France
                Author notes
                []Corresponding author laurent.debarbieux@ 123456pasteur.fr
                [∗∗ ]Corresponding author jsweitz@ 123456gatech.edu
                [5]

                These authors contributed equally

                [6]

                These authors contributed equally

                Article
                S2589-0042(23)00081-0 106004
                10.1016/j.isci.2023.106004
                9932479
                36818291
                72be3c7d-aaad-4a82-ab47-9e11371ed8d2
                © 2023.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Perspective

                immunology,virology,bacteriology,evolutionary ecology
                immunology, virology, bacteriology, evolutionary ecology

                Comments

                Comment on this article