37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Update on potential medical treatments for encapsulating peritoneal sclerosis; human and experimental data

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Encapsulating peritoneal sclerosis (EPS) is an infrequent but serious complication of peritoneal dialysis (PD). The pathogenesis is unknown but speculation is ongoing. The current management of EPS focuses on prevention and treatment of the inflammatory and fibrotic changes at the level of the peritoneal membrane with immunosuppressive and antifibrotic agents, respectively. This article reviews the currently available human and animal data on potential agents to prevent and/or treat EPS. We propose a strategy for early diagnose EPS in an attempt to avoid the development of the full-blown and potentially life-threatening clinical syndrome of EPS. Future research should focus on studying potential prophylactic and therapeutic agents in humans in large, multicenter, randomized trials but also on early detection of EPS in the inflammatory phase by means of biomarkers and the establishment of a composite EPS score.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells.

          During continuous ambulatory peritoneal dialysis, the peritoneum is exposed to bioincompatible dialysis fluids that cause denudation of mesothelial cells and, ultimately, tissue fibrosis and failure of ultrafiltration. However, the mechanism of this process has yet to be elucidated. Mesothelial cells isolated from effluents in dialysis fluid from patients undergoing continuous ambulatory peritoneal dialysis were phenotypically characterized by flow cytometry, confocal immunofluorescence, Western blotting, and reverse-transcriptase polymerase chain reaction. These cells were compared with mesothelial cells from omentum and treated with various stimuli in vitro to mimic the transdifferentiation observed during continuous ambulatory peritoneal dialysis. Results were confirmed in vivo by immunohistochemical analysis performed on peritoneal-biopsy specimens. Soon after dialysis is initiated, peritoneal mesothelial cells undergo a transition from an epithelial phenotype to a mesenchymal phenotype with a progressive loss of epithelial morphology and a decrease in the expression of cytokeratins and E-cadherin through an induction of the transcriptional repressor snail. Mesothelial cells also acquire a migratory phenotype with the up-regulation of expression of alpha2 integrin. In vitro analyses point to wound repair and profibrotic and inflammatory cytokines as factors that initiate mesothelial transdifferentiation. Immunohistochemical studies of peritoneal-biopsy specimens from patients undergoing continuous ambulatory peritoneal dialysis demonstrate the expression of the mesothelial markers intercellular adhesion molecule 1 and cytokeratins in fibroblast-like cells entrapped in the stroma, suggesting that these cells stemmed from local conversion of mesothelial cells. Our results suggest that mesothelial cells have an active role in the structural and functional alteration of the peritoneum during peritoneal dialysis. The findings suggest potential targets for the design of new dialysis solutions and markers for the monitoring of patients. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation

            We have examined the mechanism of thalidomide inhibition of lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF- alpha) production and found that the drug enhances the degradation of TNF-alpha mRNA. Thus, the half-life of the molecule was reduced from approximately 30 to approximately 17 min in the presence of 50 micrograms/ml of thalidomide. Inhibition of TNF-alpha production was selective, as other LPS-induced monocyte cytokines were unaffected. Pentoxifylline and dexamethasone, two other inhibitors of TNF-alpha production, are known to exert their effects by means of different mechanisms, suggesting that the three agents inhibit TNF-alpha synthesis at distinct points of the cytokine biosynthetic pathway. These observations provide an explanation for the synergistic effects of these drugs. The selective inhibition of TNF-alpha production makes thalidomide an ideal candidate for the treatment of inflammatory conditions where TNF-alpha-induced toxicities are observed and where immunity must remain intact.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo.

              This report describes the preclinical pharmacological profile of the new rapamycin analog, SDZ RAD, i.e., 40-O-(2-hydroxyethyl)-rapamycin. The pharmacological effects of SDZ RAD were assessed in a variety of in vitro and in vivo models, which included an autoimmune disease model as well as kidney and heart allotransplantation models using different rat strain combinations. SDZ RAD has a mode of action that is different from that of cyclosporine or FK506. In contrast to the latter, SDZ RAD inhibits growth factor-driven cell proliferation in general, as demonstrated for the in vitro cell proliferation of a lymphoid cell line and of vascular smooth muscle cells. SDZ RAD is immunosuppressive in vitro as demonstrated by the inhibition of mouse and human mixed lymphocyte reactions and the inhibition of antigen-driven proliferation of human T-cell clones. The concentrations needed to achieve 50% inhibition in all of these assays fall into the subnanomolar range. SDZ RAD is effective in the in vivo models when given by the oral route in doses ranging between 1 mg/kg/day and 5 mg/kg/day. When compared with rapamycin, the in vitro activity of SDZ RAD is generally about two to three times lower; however, when administered orally, SDZ RAD is at least as active in vivo as rapamycin. In conclusion, SDZ RAD is a new, orally active rapamycin-derivative that is immunosuppressive and that efficiently prevents graft rejection in rat models of allotransplantation. SDZ RAD has therefore been selected for development for use in combination with cyclosporine A to prevent acute and chronic rejection after solid organ allotransplantation.
                Bookmark

                Author and article information

                Contributors
                tomcor77@gmail.com
                Journal
                Int Urol Nephrol
                International Urology and Nephrology
                Springer Netherlands (Dordrecht )
                0301-1623
                1573-2584
                7 May 2010
                7 May 2010
                March 2011
                : 43
                : 1
                : 147-156
                Affiliations
                Division of Nephrology, University Health Network, University of Toronto, Toronto, ON Canada
                Article
                9744
                10.1007/s11255-010-9744-5
                3061214
                20449655
                7343706d-1993-474c-bb83-5638e39dce35
                © The Author(s) 2010
                History
                : 23 February 2010
                : 14 April 2010
                Categories
                Nephrology – Review
                Custom metadata
                © Springer Science+Business Media, B.V. 2011

                Nephrology
                peritoneal dialysis,treatment,encapsulating peritoneal sclerosis,prevention
                Nephrology
                peritoneal dialysis, treatment, encapsulating peritoneal sclerosis, prevention

                Comments

                Comment on this article