8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential expression analysis for individual cancer samples based on robust within-sample relative gene expression orderings across multiple profiling platforms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The highly stable within-sample relative expression orderings (REOs) of gene pairs in a particular type of human normal tissue are widely reversed in the cancer condition. Based on this finding, we have recently proposed an algorithm named RankComp to detect differentially expressed genes (DEGs) for individual disease samples measured by a particular platform. In this paper, with 461 normal lung tissue samples separately measured by four commonly used platforms, we demonstrated that tens of millions of gene pairs with significantly stable REOs in normal lung tissue can be consistently detected in samples measured by different platforms. However, about 20% of stable REOs commonly detected by two different platforms (e.g., Affymetrix and Illumina platforms) showed inconsistent REO patterns due to the differences in probe design principles. Based on the significantly stable REOs (FDR<0.01) for normal lung tissue consistently detected by the four platforms, which tended to have large rank differences, RankComp detected averagely 1184, 1335 and 1116 DEGs per sample with averagely 96.51%, 95.95% and 94.78% precisions in three evaluation datasets with 25, 57 and 58 paired lung cancer and normal samples, respectively. Individualized pathway analysis revealed some common and subtype-specific functional mechanisms of lung cancer. Similar results were observed for colorectal cancer. In conclusion, based on the cross-platform significantly stable REOs for a particular normal tissue, differentially expressed genes and pathways in any disease sample measured by any of the platforms can be readily and accurately detected, which could be further exploited for dissecting the heterogeneity of cancer.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments.

          One of the main objectives in the analysis of microarray experiments is the identification of genes that are differentially expressed under two experimental conditions. This task is complicated by the noisiness of the data and the large number of genes that are examined simultaneously. Here, we present a novel technique for identifying differentially expressed genes that does not originate from a sophisticated statistical model but rather from an analysis of biological reasoning. The new technique, which is based on calculating rank products (RP) from replicate experiments, is fast and simple. At the same time, it provides a straightforward and statistically stringent way to determine the significance level for each gene and allows for the flexible control of the false-detection rate and familywise error rate in the multiple testing situation of a microarray experiment. We use the RP technique on three biological data sets and show that in each case it performs more reliably and consistently than the non-parametric t-test variant implemented in Tusher et al.'s significance analysis of microarrays (SAM). We also show that the RP results are reliable in highly noisy data. An analysis of the physiological function of the identified genes indicates that the RP approach is powerful for identifying biologically relevant expression changes. In addition, using RP can lead to a sharp reduction in the number of replicate experiments needed to obtain reproducible results.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods

            The expression microarray is a frequently used approach to study gene expression on a genome-wide scale. However, the data produced by the thousands of microarray studies published annually are confounded by “batch effects,” the systematic error introduced when samples are processed in multiple batches. Although batch effects can be reduced by careful experimental design, they cannot be eliminated unless the whole study is done in a single batch. A number of programs are now available to adjust microarray data for batch effects prior to analysis. We systematically evaluated six of these programs using multiple measures of precision, accuracy and overall performance. ComBat, an Empirical Bayes method, outperformed the other five programs by most metrics. We also showed that it is essential to standardize expression data at the probe level when testing for correlation of expression profiles, due to a sizeable probe effect in microarray data that can inflate the correlation among replicates and unrelated samples.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adjustment of systematic microarray data biases.

              Systematic differences due to experimental features of microarray experiments are present in most large microarray data sets. Many different experimental features can cause biases including different sources of RNA, different production lots of microarrays or different microarray platforms. These systematic effects present a substantial hurdle to the analysis of microarray data. We present here a new method for the identification and adjustment of systematic biases that are present within microarray data sets. Our approach is based on modern statistical discrimination methods and is shown to be very effective in removing systematic biases present in a previously published breast tumor cDNA microarray data set. The new method of 'Distance Weighted Discrimination (DWD)' is shown to be better than Support Vector Machines and Singular Value Decomposition for the adjustment of systematic microarray effects. In addition, it is shown to be of general use as a tool for the discrimination of systematic problems present in microarray data sets, including the merging of two breast tumor data sets completed on different microarray platforms. Matlab software to perform DWD can be retrieved from https://genome.unc.edu/pubsup/dwd/
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                18 October 2016
                13 September 2016
                : 7
                : 42
                : 68909-68920
                Affiliations
                1 Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, 350001, China
                2 Department of Preventive Medicine, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, China
                Author notes
                Correspondence to: Zheng Guo, guoz@ 123456ems.hrbmu.edu.cn
                Article
                11996
                10.18632/oncotarget.11996
                5356599
                27634898
                735fe018-7f4b-465f-bf8b-327ac26435d0
                Copyright: © 2016 Guan et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 February 2016
                : 9 August 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                gene expression profiling,multiple platforms,differentially expressed genes,heterogeneity of cancer,individual level

                Comments

                Comment on this article