1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pump-Push-Probe for Ultrafast All-Optical Switching: The Case of a Nanographene Molecule

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the last two decades, the three-beams pump-push-probe (PPP) technique has become a well-established tool for investigating the multidimensional configurational space of a molecule, as it permits to disclose precious information about the multiple and often complex deactivation pathways of the excited molecule. From the spectroscopic point of view, such a tool has revealed details about the efficiency of charge pairs generation and conformational relaxation in p-conjugated molecules and macromolecules. In addition, PPP has been effectively utilised for modulating the gain signal in conjugated materials by taking advantage of the spectral overlap between stimulated emission and charge absorption in those systems. However, the relatively low stability of conjugated polymers under intense photoexcitation has been a crucial limitation for their real employment in plastic optical fibres (POFs) and for signal control applications. Here, we highlight the role of PPP for achieving ultrafast all-optical switching in p-conjugated systems. Furthermore, we report new experimental data on optical switching of a newly synthesised graphene molecule, namely dibenzo[hi,st]ovalene (DBOV). The superior environmental and photostability of DBOV and, in general, of graphene nanostructures can represent a great advantage for their effective applications in POFs and information and communications technology.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.

          Graphene shows promise as a future material for nanoelectronics owing to its compatibility with industry-standard lithographic processing, electron mobilities up to 150 times greater than Si and a thermal conductivity twice that of diamond. The electronic structure of graphene nanoribbons (GNRs) and quantum dots (GQDs) has been predicted to depend sensitively on the crystallographic orientation of their edges; however, the influence of edge structure has not been verified experimentally. Here, we use tunnelling spectroscopy to show that the electronic structure of GNRs and GQDs with 2-20 nm lateral dimensions varies on the basis of the graphene edge lattice symmetry. Predominantly zigzag-edge GQDs with 7-8 nm average dimensions are metallic owing to the presence of zigzag edge states. GNRs with a higher fraction of zigzag edges exhibit a smaller energy gap than a predominantly armchair-edge ribbon of similar width, and the magnitudes of the measured GNR energy gaps agree with recent theoretical calculations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Neutron Radiation Tolerance of Two Benchmark Thiophene-Based Conjugated Polymers: the Importance of Crystallinity for Organic Avionics

            Aviation and space applications can benefit significantly from lightweight organic electronics, now spanning from displays to logics, because of the vital importance of minimising payload (size and mass). It is thus crucial to assess the damage caused to such materials by cosmic rays and neutrons, which pose a variety of hazards through atomic displacements following neutron-nucleus collisions. Here we report the first study of the neutron radiation tolerance of two poly(thiophene)s-based organic semiconductors: poly(3-hexylthiophene-2,5-diyl), P3HT, and the liquid-crystalline poly(2,5-bis (3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT. We combine spectroscopic investigations with characterisation of intrinsic charge mobility to show that PBTTT exhibits significantly higher tolerance than P3HT. We explain this in terms of a superior chemical, structural and conformational stability of PBTTT, which can be ascribed to its higher crystallinity, in turn induced by a combination of molecular design features. Our approach can be used to develop design strategies for better neutron radiation-tolerant materials, thus paving the way for organic semiconductors to enter avionics and space applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dynamics of higher photoexcited states in m-LPPP probed with sub-20 fs time resolution

                Bookmark

                Author and article information

                Journal
                20 December 2018
                Article
                10.1002/adfm.201805249
                1812.08481
                7365ee19-5df1-453a-a599-a66d29ffbbee

                http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                Custom metadata
                physics.chem-ph

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article