6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Gas kinematics in powerful radio galaxies atz~ 2: Energy supply from star formation, AGN, and radio jets

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Galactic Stellar and Substellar Initial Mass Function

          We review recent determinations of the present day and initial mass functions in various components of the Galaxy, disk, spheroid, young and globular clusters. As a general feature, the IMF is well described by a power-law form for \(m\ga 1 \msol\) and a lognormal form below. The extension of the disk IMF into the brown dwarf (BD) regime is in good agreement with observations and yields a disk BD number-density comparable to the stellar one \(\sim 0.1 \pc3\). The IMF of young clusters is found to be consistent with the disk field IMF, providing the same correction for unresolved binaries. The spheroid IMF relies on much less robust grounds. Within all the uncertainties, it is found to be similar to the one derived for globular clusters, and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk. The IMF characteristic of early star formation remains undetermined, but different observational constraints suggest that it does not extend below \(\sim 1 \msol\). These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications in yielding more accurate mass-to-light ratio determinations. The M/L ratios obtained with the disk and the spheroid IMF yield values 1.8 and 1.4 smaller than a Salpeter IMF, respectively. This general IMF determination is examined in the context of star formation theory. (shortened)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Star Formation in Galaxies Along the Hubble Sequence

            Observations of star formation rates (SFRs) in galaxies provide vital clues to the physical nature of the Hubble sequence, and are key probes of the evolutionary properties of galaxies. The focus of this review is on the broad patterns in the star formation properties of galaxies along the Hubble sequence, and their implications for understanding galaxy evolution and the physical processes that drive the evolution. Star formation in the disks and nuclear regions of galaxies are reviewed separately, then discussed within a common interpretive framework. The diagnostic methods used to measure SFRs are also reviewed, and a self-consistent set of SFR calibrations is presented as an aid to workers in the field.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A self-similar model for extragalactic radio sources

                Bookmark

                Author and article information

                Journal
                Astronomy & Astrophysics
                A&A
                EDP Sciences
                0004-6361
                1432-0746
                April 2017
                April 14 2017
                April 2017
                : 600
                : A121
                Article
                10.1051/0004-6361/201629357
                736c40d5-a61a-44d2-aa81-ff5c5d9ad14c
                © 2017
                History

                Comments

                Comment on this article