19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiological Monitoring – A Cornerstone for Pediatric Inflammatory Multisystem Syndrome Temporally Associated with COVID-19 Outcome: A Case Report and a Review from the Literature

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Pediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS) is a rare life-threatening condition requiring a complex management and multidisciplinary approach, whose outcome depends on the early diagnosis.

          Case report

          We report the case of a 2 years and-5-month-old boy admitted in our clinic for fever, abdominal pain and diarrhea. The clinical exam at the time of admission revealed influenced gen-eral status, bilateral palpebral edema and conjunctivitis, mucocutaneous signs of dehydration, and abdominal tenderness at palpation. The laboratory tests performed pointed out lymphopenia, thrombocytopenia, anemia, elevated C-reactive protein – CRP, erythrocyte sedimentation rate and ferritin levels, hyponatremia, hypopotassemia, hypertriglyceridemia, elevated D-dimer, in-creased troponin and NT-proBNP. The real-time polymerase chain reaction (RT-PCR) test for SARS-CoV-2 infection was negative, but the serology was positive. Thus, established the diagnosis of PIMS-TS. We initiated intravenous immunoglobulin, empirical antibiotic, anticoagulation therapy and symptomatic drugs. Nevertheless, the clinical course and laboratory parameters worsened, and the 2nd echocardiography pointed out minimal pericardial effusion, slight dilation of the left cavities, dyskinesia of the inferior and septal basal segments of the left ventricle (LV), and LV systolic dysfunction. Therefore, we associated intravenous methylprednisolone, angiotensin converting enzyme inhibitors, spironolactone and hydrochlorothiazide, with outstanding favorable evolution.

          Conclusions

          Echocardiographic monitoring might be a lifesaving diagnostic tool in the management of PIMS-TS.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: found

          COVID-19: consider cytokine storm syndromes and immunosuppression

          As of March 12, 2020, coronavirus disease 2019 (COVID-19) has been confirmed in 125 048 people worldwide, carrying a mortality of approximately 3·7%, 1 compared with a mortality rate of less than 1% from influenza. There is an urgent need for effective treatment. Current focus has been on the development of novel therapeutics, including antivirals and vaccines. Accumulating evidence suggests that a subgroup of patients with severe COVID-19 might have a cytokine storm syndrome. We recommend identification and treatment of hyperinflammation using existing, approved therapies with proven safety profiles to address the immediate need to reduce the rising mortality. Current management of COVID-19 is supportive, and respiratory failure from acute respiratory distress syndrome (ARDS) is the leading cause of mortality. 2 Secondary haemophagocytic lymphohistiocytosis (sHLH) is an under-recognised, hyperinflammatory syndrome characterised by a fulminant and fatal hypercytokinaemia with multiorgan failure. In adults, sHLH is most commonly triggered by viral infections 3 and occurs in 3·7–4·3% of sepsis cases. 4 Cardinal features of sHLH include unremitting fever, cytopenias, and hyperferritinaemia; pulmonary involvement (including ARDS) occurs in approximately 50% of patients. 5 A cytokine profile resembling sHLH is associated with COVID-19 disease severity, characterised by increased interleukin (IL)-2, IL-7, granulocyte-colony stimulating factor, interferon-γ inducible protein 10, monocyte chemoattractant protein 1, macrophage inflammatory protein 1-α, and tumour necrosis factor-α. 6 Predictors of fatality from a recent retrospective, multicentre study of 150 confirmed COVID-19 cases in Wuhan, China, included elevated ferritin (mean 1297·6 ng/ml in non-survivors vs 614·0 ng/ml in survivors; p 39·4°C 49 Organomegaly None 0 Hepatomegaly or splenomegaly 23 Hepatomegaly and splenomegaly 38 Number of cytopenias * One lineage 0 Two lineages 24 Three lineages 34 Triglycerides (mmol/L) 4·0 mmol/L 64 Fibrinogen (g/L) >2·5 g/L 0 ≤2·5 g/L 30 Ferritin ng/ml 6000 ng/ml 50 Serum aspartate aminotransferase <30 IU/L 0 ≥30 IU/L 19 Haemophagocytosis on bone marrow aspirate No 0 Yes 35 Known immunosuppression † No 0 Yes 18 The Hscore 11 generates a probability for the presence of secondary HLH. HScores greater than 169 are 93% sensitive and 86% specific for HLH. Note that bone marrow haemophagocytosis is not mandatory for a diagnosis of HLH. HScores can be calculated using an online HScore calculator. 11 HLH=haemophagocytic lymphohistiocytosis. * Defined as either haemoglobin concentration of 9·2 g/dL or less (≤5·71 mmol/L), a white blood cell count of 5000 white blood cells per mm3 or less, or platelet count of 110 000 platelets per mm3 or less, or all of these criteria combined. † HIV positive or receiving longterm immunosuppressive therapy (ie, glucocorticoids, cyclosporine, azathioprine).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperinflammatory shock in children during COVID-19 pandemic

            South Thames Retrieval Service in London, UK, provides paediatric intensive care support and retrieval to 2 million children in South East England. During a period of 10 days in mid-April, 2020, we noted an unprecedented cluster of eight children with hyperinflammatory shock, showing features similar to atypical Kawasaki disease, Kawasaki disease shock syndrome, 1 or toxic shock syndrome (typical number is one or two children per week). This case cluster formed the basis of a national alert. All children were previously fit and well. Six of the children were of Afro-Caribbean descent, and five of the children were boys. All children except one were well above the 75th centile for weight. Four children had known family exposure to coronavirus disease 2019 (COVID-19). Demographics, clinical findings, imaging findings, treatment, and outcome for this cluster of eight children are shown in the table . Table Demographics, clinical findings, imaging findings, treatment, and outcome from PICU Age; weight; BMI; comorbidities Clinical presentation Organ support Pharmacological treatment Imaging results Laboratory results Microbiology results PICU length of stay; outcome Initial PICU referral Patient 1 (male, AfroCaribbean) 14 years; 95 kg; BMI 33 kg/m2; no comorbidities 4 days >40°C; 3 days non-bloody diarrhoea; abdominal pain; headache BP 80/40 mmHg; HR 120 beats/min; RR 40 breaths per min; work of breathing; SatO2 99% NCO2 MV, RRT, VA-ECMO Dopamine, noradrenaline, argipressin, adrenaline milrinone, hydroxicortisone, IVIG, ceftriaxone, clindamycin RV dysfunction/elevate RVSP; ileitis, GB oedema and dilated biliary tree, ascites, bilateral basal lung consolidations and diffuse nodules Ferritin 4220 μg/L; D-dimers 13·4 mg/L; troponin 675 ng/L; proBNP >35 000; CRP 556 mg/L; procalcitonin>100 μg/L; albumin 20 g/L; platelets 123 × 109 SARS-CoV-2 positive (post mortem) 6 days; demise (right MCA and ACA ischaemic infarction) Patient 2 (male, AfroCaribbean) 8 years; 30 kg; BMI 18 kg/m2; no comorbidities 5 days >39°C; non-bloody diarrhoea; abdominal pain; conjunctivitis; rash BP 81/37 mmHg; HR 165 beats/min; RR 40 breaths/min; SVIA MV Noradrenaline, adrenaline, IVIG, infliximab, methylprednisolone, ceftriaxone, clindamycin Mild biventricular dysfunction, severely dilated coronaries; ascites, pleural effusions Ferritin 277 μg/L; D-dimers 4·8 mg/L; troponin 25 ng/L; CRP 295 mg/L; procalcitonin 8·4 μg/L; albumin 18 g/L; platelets 61 × 109 SARS-CoV-2 negative; likely COVID-19 exposure from mother 4 days; alive Patient 3 (male, Middle-Eastern) 4 years; 18 kg; BMI 17 kg/m2; no comorbidities 4 days >39°C; diarrhoea and vomiting; abdominal pain; rash; conjunctivitis BP 90/30 mmHg; HR 170 beats/min; RR 35 breaths/min; SVIA MV Noradrenaline, adrenaline, IVIG ceftriaxone, clindamycin Ascites, pleural effusions Ferritin 574 μg/L; D-dimers 11·7 mg/L; tropinin 45 ng/L; CRP 322 mg/L; procalcitonin 10·3 μg/L; albumin 22 g/L; platelets 103 × 109 Adenovirus positive; HERV positive 4 days; alive Patient 4 (female, AfroCaribbean) 13 years; 64 kg; BMI 33 kg/m2; no comorbidities 5 days >39°C; non-bloody diarrhoea; abdominal pain; conjunctivitis BP 77/41 mmHg; HR 127 beats/min; RR 24 breaths/min; SVIA HFNC Noradrenaline, milrinone, IVIG, ceftriaxone, clindamycin Moderate-severe LV dysfunction; ascites Ferritin 631 μg/L; D-dimers 3·4 mg/L; troponin 250 ng/L; proBNP 13427 ng/L; CRP 307 mg/L; procalcitonin 12·1 μg/L; albumin 21 g/L; platelets 146 × 109 SARS-CoV-2 negative 5 days; alive Patient 5 (male, Asian) 6 years; 22 kg; BMI 14 kg/m2; autism, ADHD 4 days >39°C; odynophagia; rash; conjunctivitis BP 85/43 mmHg; HR 150 beats/min; RR 50 breaths/min; SVIA NIV Milrinone, IVIG, methylprednisolone, aspirin, ceftriaxone Dilated LV, AVVR, pericoronary hyperechogenicity Ferritin 550 μg/L; D-dimers 11·1 mg/L; troponin 47 ng/L; NT-proBNP 7004 ng/L; CRP 183 mg/L; albumin 24 g/L; platelets 165 × 109 SARS-CoV-2 positive; likely COVID-19 exposure from father 4 days; alive Patient 6 (female, AfroCaribbean) 6 years; 26 kg; BMI 15 kg/m2; no comorbidities 5 days >39°C; myalgia; 3 days diarrhoea and vomiting; conjunctivitis BP 77/46 mmHg; HR 120 beats/min; RR 40 breaths/min; SVIA NIV Dopamine, noradrenaline, milrinone, IVIG, methylprednisolone, aspirin, ceftriaxone, clindamycin Mild LV systolic impairment Ferritin 1023 μg/L; D-dimers 9·9 mg/L; troponin 45 ng/L; NT-proBNP 9376 ng/L; CRP mg/L 169; procalcitonin 11·6 μg/L; albumin 25 g/L; platelets 158 SARS-CoV-2 negative; confirmed COVID-19 exposure from grandfather 3 days; alive Patient 7 (male, AfroCaribbean 12 years; 50kg; BMI 20 kg/m2; alopecia areata, hayfever 4 days >39°C; 2 days diarrhoea and vomiting; abdominal pain; rash; odynophagia; headache BP 80/48 mmHg; HR 125 beats/min; RR 47 breaths/min; SatO2 98%; HFNC FiO2 0.35 MV Noradrenaline, adrenaline, milrinone, IVIG, methylprednisolone, heparin, ceftriaxone, clindamycin, metronidazole Severe biventricular impairment; ileitis, ascites, pleural effusions Ferritin 958 μg/L; D-dimer 24·5 mg/L; troponin 813 ng/L; NT-proBNP >35 000 ng/L; CRP 251 mg/L; procalcitonin 71·5 μg/L; albumin 24 g/L; platelets 273 × 109 SARS-CoV-2 negative 4 days; alive Patient 8 (female, AfroCaribbean) 8 years; 50 kg; BMI 25 kg/m2; no comorbidities 4 days >39°C; odynophagia; 2 days diarrhoea and vomiting; abdominal pain BP 82/41 mmHg; HR 130 beats/min; RR 35 breaths/min; SatO2 97% NCO2 MV Dopamine, noradrenaline, milrinone, IVIG, aspirin, ceftriaxone, clindamycin Moderate LV dysfunction Ferritin 460 μg/L; D-dimers 4·3 mg/L; troponin 120 ng/L; CRP 347 mg/L; procalcitonin 7·42 μg/L; albumin 22 g/L; platelets 296 × 109 SARS-CoV-2 negative; likely COVID-19 exposure from parent 7 days; alive ACA= anterior cerebral artery. ADHD=attention deficit hyperactivity disorder. AVR=atrioventricular valve regurgitation. BMI=body mass index. BP=blood pressure. COVID-19=coronavirus disease 2019. CRP=C-reactive protein. FiO2=fraction of inspired oxygen. HERV=human endogenous retrovirus. HFNC=high-flow nasal canula. HR=heart rate. IVIG=human intravenous immunoglobulin. LV=left ventricle. MCA=middle cerebral artery. MV=mechanical ventilation via endotracheal tube. NIV=non-invasive ventilation. PICU=paediatric intensive care unit. RA=room air. RR=respiratory rate. RRT=renal replacement therapy. RV=right ventricle. RVSP=right ventricular systolic pressure. SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. SatO2=oxygen saturation. SVIA=self-ventilating in air. VA-ECMO=veno-arterial extracorporeal membrane oxygenation. Clinical presentations were similar, with unrelenting fever (38–40°C), variable rash, conjunctivitis, peripheral oedema, and generalised extremity pain with significant gastrointestinal symptoms. All progressed to warm, vasoplegic shock, refractory to volume resuscitation and eventually requiring noradrenaline and milrinone for haemodynamic support. Most of the children had no significant respiratory involvement, although seven of the children required mechanical ventilation for cardiovascular stabilisation. Other notable features (besides persistent fever and rash) included development of small pleural, pericardial, and ascitic effusions, suggestive of a diffuse inflammatory process. All children tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on broncho-alveolar lavage or nasopharyngeal aspirates. Despite being critically unwell, with laboratory evidence of infection or inflammation 3 including elevated concentrations of C-reactive protein, procalcitonin, ferritin, triglycerides, and D-dimers, no pathological organism was identified in seven of the children. Adenovirus and enterovirus were isolated in one child. Baseline electrocardiograms were non-specific; however, a common echocardiographic finding was echo-bright coronary vessels (appendix), which progressed to giant coronary aneurysm in one patient within a week of discharge from paediatric intensive care (appendix). One child developed arrhythmia with refractory shock, requiring extracorporeal life support, and died from a large cerebrovascular infarct. The myocardial involvement 2 in this syndrome is evidenced by very elevated cardiac enzymes during the course of illness. All children were given intravenous immunoglobulin (2 g/kg) in the first 24 h, and antibiotic cover including ceftriaxone and clindamycin. Subsequently, six children have been given 50 mg/kg aspirin. All of the children were discharged from PICU after 4–6 days. Since discharge, two of the children have tested positive for SARS-CoV-2 (including the child who died, in whom SARS-CoV-2 was detected post mortem). All children are receiving ongoing surveillance for coronary abnormalities. We suggest that this clinical picture represents a new phenomenon affecting previously asymptomatic children with SARS-CoV-2 infection manifesting as a hyperinflammatory syndrome with multiorgan involvement similar to Kawasaki disease shock syndrome. The multifaceted nature of the disease course underlines the need for multispecialty input (intensive care, cardiology, infectious diseases, immunology, and rheumatology). The intention of this Correspondence is to bring this subset of children to the attention of the wider paediatric community and to optimise early recognition and management. As this Correspondence goes to press, 1 week after the initial submission, the Evelina London Children's Hospital paediatric intensive care unit has managed more than 20 children with similar clinical presentation, the first ten of whom tested positive for antibody (including the original eight children in the cohort described above).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study

              Summary Background The Bergamo province, which is extensively affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic, is a natural observatory of virus manifestations in the general population. In the past month we recorded an outbreak of Kawasaki disease; we aimed to evaluate incidence and features of patients with Kawasaki-like disease diagnosed during the SARS-CoV-2 epidemic. Methods All patients diagnosed with a Kawasaki-like disease at our centre in the past 5 years were divided according to symptomatic presentation before (group 1) or after (group 2) the beginning of the SARS-CoV-2 epidemic. Kawasaki- like presentations were managed as Kawasaki disease according to the American Heart Association indications. Kawasaki disease shock syndrome (KDSS) was defined by presence of circulatory dysfunction, and macrophage activation syndrome (MAS) by the Paediatric Rheumatology International Trials Organisation criteria. Current or previous infection was sought by reverse-transcriptase quantitative PCR in nasopharyngeal and oropharyngeal swabs, and by serological qualitative test detecting SARS-CoV-2 IgM and IgG, respectively. Findings Group 1 comprised 19 patients (seven boys, 12 girls; aged 3·0 years [SD 2·5]) diagnosed between Jan 1, 2015, and Feb 17, 2020. Group 2 included ten patients (seven boys, three girls; aged 7·5 years [SD 3·5]) diagnosed between Feb 18 and April 20, 2020; eight of ten were positive for IgG or IgM, or both. The two groups differed in disease incidence (group 1 vs group 2, 0·3 vs ten per month), mean age (3·0 vs 7·5 years), cardiac involvement (two of 19 vs six of ten), KDSS (zero of 19 vs five of ten), MAS (zero of 19 vs five of ten), and need for adjunctive steroid treatment (three of 19 vs eight of ten; all p<0·01). Interpretation In the past month we found a 30-fold increased incidence of Kawasaki-like disease. Children diagnosed after the SARS-CoV-2 epidemic began showed evidence of immune response to the virus, were older, had a higher rate of cardiac involvement, and features of MAS. The SARS-CoV-2 epidemic was associated with high incidence of a severe form of Kawasaki disease. A similar outbreak of Kawasaki-like disease is expected in countries involved in the SARS-CoV-2 epidemic. Funding None.
                Bookmark

                Author and article information

                Journal
                J Crit Care Med (Targu Mures)
                J Crit Care Med (Targu Mures)
                jccm
                The Journal of Critical Care Medicine
                Sciendo
                2393-1809
                2393-1817
                October 2022
                12 November 2022
                : 8
                : 4
                : 273-278
                Affiliations
                [1 ]Discipline of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures , Mures Romania
                [2 ]Discipline of Infectious Disease I, Mures County Hospital, Targu Mures , Mures Romania
                [3 ]Pediatrics Clinic, Emergency County Hospital Targu-Mures , Mures Romania
                [4 ]Discipline of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures , Mures Romania
                [5 ]George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures , Mures Romania
                [6 ]Emergency County Hospital Targu Mures , Mures Romania
                [7 ]Pediatrics Cardiology Clinic, Institute of Cardiovascular Diseases Targu Mures , Mures Romania
                Author notes
                [* ] Discipline of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania. marginean.oana@ 123456gmail.com
                Article
                jccm-2022-0022
                10.2478/jccm-2022-0022
                9682930
                36474612
                73998ff2-a597-4472-bba7-47c7e407e264
                © 2022 Lorena Elena Melit, Oana Marginean, Tudor Fleșeriu, Alina Negrea, Maria Oana Săsăran, Simina Ghiraghosian-Rusu, Andrei Călin Dragomir, Mirela Oiaga, Carmen Șuteu, published by Sciendo

                This work is licensed under the Creative Commons Attribution 4.0 International License.

                History
                : 27 October 2021
                : 30 August 2022
                Page count
                Pages: 6
                Categories
                Case Report

                pims-ts,echocardiography,systolic disfunction,outcome,child
                pims-ts, echocardiography, systolic disfunction, outcome, child

                Comments

                Comment on this article