2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references227

          • Record: found
          • Abstract: found
          • Article: not found

          Targeting the IL-6/JAK/STAT3 signalling axis in cancer

          The IL-6/JAK/STAT3 pathway is aberrantly hyperactivated in many types of cancer, and such hyperactivation is generally associated with a poor clinical prognosis. In the tumour microenvironment, IL-6/JAK/STAT3 signalling acts to drive the proliferation, survival, invasiveness, and metastasis of tumour cells, while strongly suppressing the antitumour immune response. Thus, treatments that target the IL-6/JAK/STAT3 pathway in patients with cancer are poised to provide therapeutic benefit by directly inhibiting tumour cell growth and by stimulating antitumour immunity. Agents targeting IL-6, the IL-6 receptor, or JAKs have already received FDA approval for the treatment of inflammatory conditions or myeloproliferative neoplasms and for the management of certain adverse effects of chimeric antigen receptor T cells, and are being further evaluated in patients with haematopoietic malignancies and in those with solid tumours. Novel inhibitors of the IL-6/JAK/STAT3 pathway, including STAT3-selective inhibitors, are currently in development. Herein, we review the role of IL-6/JAK/STAT3 signalling in the tumour microenvironment and the status of preclinical and clinical investigations of agents targeting this pathway. We also discuss the potential of combining IL-6/JAK/STAT3 inhibitors with currently approved therapeutic agents directed against immune-checkpoint inhibitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease

            Crohn’s disease (CD) and ulcerative colitis (UC), the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry with rising prevalence in other populations 1 . Genome-wide association studies (GWAS) and subsequent meta-analyses of CD and UC 2,3 as separate phenotypes implicated previously unsuspected mechanisms, such as autophagy 4 , in pathogenesis and showed that some IBD loci are shared with other inflammatory diseases 5 . Here we expand knowledge of relevant pathways by undertaking a meta-analysis of CD and UC genome-wide association scans, with validation of significant findings in more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional and balancing selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe striking overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps

              We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency 2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Reviews Gastroenterology & Hepatology
                Nat Rev Gastroenterol Hepatol
                Springer Science and Business Media LLC
                1759-5045
                1759-5053
                July 01 2021
                Article
                10.1038/s41575-021-00473-x
                34211157
                73b0b7d1-e494-4273-8efd-b7b1683020b9
                © 2021

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article