5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Computational Analysis of the Impact of Chronic Stress on Intrinsic and Synaptic Excitability in the Hippocampus

      research-article
      ,
      Journal of Neurophysiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dendritic atrophy and impaired long-term synaptic potentiation (LTP) are hallmarks of chronic stress-induced plasticity in the hippocampus. It has been hypothesized that these disparate structural and physiological correlates of stress lead to hippocampal dysfunction by reducing postsynaptic dendritic surface, thereby adversely affecting the availability of synaptic inputs and suppressing LTP. Here we examine the validity of this framework using biophysical models of hippocampal CA3 pyramidal neurons. To statistically match with the experimentally observed region specificity of stress-induced atrophy, we use an algorithm to systematically prune three-dimensional reconstructions of CA3 pyramidal neurons. Using this algorithm, we build a biophysically realistic computational model to analyze the effects of stress on intrinsic and synaptic excitability. We find that stress-induced atrophy of CA3 dendrites leads to an increase in input resistance, which depends exponentially on the percentage of neuronal atrophy. This increase translates directly into higher spiking frequencies in response to both somatic current injections and synaptic inputs at various locations along the dendritic arbor. Remarkably, we also find that the dendritic regions that manifest atrophy-induced synaptic hyperexcitability are governed by the region specificity of the underlying dendritic atrophy. Coupled with experimentally observed modulation of N-methyl- d-aspartate receptor currents, such hyperexcitability could tilt the balance of plasticity mechanisms in favor of synaptic potentiation over depression. Thus paradoxically, our results suggest that stress may impair hippocampal learning and memory, not by directly inhibiting LTP, but because of stress-induced facilitation of intrinsic and synaptic excitability and the consequent imbalance in bidirectional synaptic plasticity.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Stress and hippocampal plasticity.

          B S McEwen (1999)
          The hippocampus is a target of stress hormones, and it is an especially plastic and vulnerable region of the brain. It also responds to gonadal, thyroid, and adrenal hormones, which modulate changes in synapse formation and dendritic structure and regulate dentate gyrus volume during development and in adult life. Two forms of structural plasticity are affected by stress: Repeated stress causes atrophy of dendrites in the CA3 region, and both acute and chronic stress suppresses neurogenesis of dentate gyrus granule neurons. Besides glucocorticoids, excitatory amino acids and N-methyl-D-aspartate (NMDA) receptors are involved in these two forms of plasticity as well as in neuronal death that is caused in pyramidal neurons by seizures and by ischemia. The two forms of hippocampal structural plasticity are relevant to the human hippocampus, which undergoes a selective atrophy in a number of disorders, accompanied by deficits in declarative episodic, spatial, and contextual memory performance. It is important, from a therapeutic standpoint, to distinguish between a permanent loss of cells and a reversible atrophy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic plasticity, memory and the hippocampus: a neural network approach to causality.

            Two facts about the hippocampus have been common currency among neuroscientists for several decades. First, lesions of the hippocampus in humans prevent the acquisition of new episodic memories; second, activity-dependent synaptic plasticity is a prominent feature of hippocampal synapses. Given this background, the hypothesis that hippocampus-dependent memory is mediated, at least in part, by hippocampal synaptic plasticity has seemed as cogent in theory as it has been difficult to prove in practice. Here we argue that the recent development of transgenic molecular devices will encourage a shift from mechanistic investigations of synaptic plasticity in single neurons towards an analysis of how networks of neurons encode and represent memory, and we suggest ways in which this might be achieved. In the process, the hypothesis that synaptic plasticity is necessary and sufficient for information storage in the brain may finally be validated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The stressed hippocampus, synaptic plasticity and lost memories.

              Stress is a biologically significant factor that, by altering brain cell properties, can disturb cognitive processes such as learning and memory, and consequently limit the quality of human life. Extensive rodent and human research has shown that the hippocampus is not only crucially involved in memory formation, but is also highly sensitive to stress. So, the study of stress-induced cognitive and neurobiological sequelae in animal models might provide valuable insight into the mnemonic mechanisms that are vulnerable to stress. Here, we provide an overview of the neurobiology of stress memory interactions, and present a neural endocrine model to explain how stress modifies hippocampal functioning.
                Bookmark

                Author and article information

                Journal
                J Neurophysiol
                jn
                jn
                JN
                Journal of Neurophysiology
                American Physiological Society (Bethesda, MD )
                0022-3077
                1522-1598
                June 2010
                24 March 2010
                1 June 2011
                : 103
                : 6
                : 3070-3083
                Affiliations
                National Centre for Biological Sciences, Bangalore 560065, India
                Author notes
                Address for reprint requests and other correspondence: S. Chattarji, National Ctr. for Biological Sciences (NCBS), GKVK Campus, Bangalore 560065, India (E-mail: shona@ 123456ncbs.res.in ).
                Article
                JN-00913-2009
                10.1152/jn.00913.2009
                2888238
                20457854
                73d475d9-b9cd-4762-aa3f-ae41b951b86b
                Copyright © 2010 the American Physiological Society

                This document may be redistributed and reused, subject to www.the-aps.org/publications/journals/funding_addendum_policy.htm.

                History
                : 19 October 2009
                : 15 March 2010
                Categories
                Articles

                Neurology
                Neurology

                Comments

                Comment on this article