136
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Epidemiology of Rift Valley Fever Virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large-scale vaccination of animals might have influenced virus evolution.

          Abstract

          Phylogenetic relationships were examined for 198 Rift Valley fever virus isolates and 5 derived strains obtained from various sources in Saudi Arabia and 16 countries in Africa during a 67-year period (1944–2010). A maximum-likelihood tree prepared with sequence data for a 490-nt section of the Gn glycoprotein gene showed that 95 unique sequences sorted into 15 lineages. A 2010 isolate from a patient in South Africa potentially exposed to co-infection with live animal vaccine and wild virus was a reassortant. The potential influence of large-scale use of live animal vaccine on evolution of Rift Valley fever virus is discussed.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          An Outbreak of Rift Valley Fever in Northeastern Kenya, 1997-98

          In December 1997, 170 hemorrhagic fever-associated deaths were reported in Carissa District, Kenya. Laboratory testing identified evidence of acute Rift Valley fever virus (RVFV). Of the 171 persons enrolled in a cross-sectional study, 31(18%) were anti-RVFV immunoglobulin (Ig) M positive. An age-adjusted IgM antibody prevalence of 14% was estimated for the district. We estimate approximately 27,500 infections occurred in Garissa District, making this the largest recorded outbreak of RVFV in East Africa. In multivariate analysis, contact with sheep body fluids and sheltering livestock in one’s home were significantly associated with infection. Direct contact with animals, particularly contact with sheep body fluids, was the most important modifiable risk factor for RVFV infection. Public education during epizootics may reduce human illness and deaths associated with future outbreaks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complete genome analysis of 33 ecologically and biologically diverse Rift Valley fever virus strains reveals widespread virus movement and low genetic diversity due to recent common ancestry.

            Rift Valley fever (RVF) virus is a mosquito-borne RNA virus responsible for large explosive outbreaks of acute febrile disease in humans and livestock in Africa with significant mortality and economic impact. The successful high-throughput generation of the complete genome sequence was achieved for 33 diverse RVF virus strains collected from throughout Africa and Saudi Arabia from 1944 to 2000, including strains differing in pathogenicity in disease models. While several distinct virus genetic lineages were determined, which approximately correlate with geographic origin, multiple exceptions indicative of long-distance virus movement have been found. Virus strains isolated within an epidemic (e.g., Mauritania, 1987, or Egypt, 1977 to 1978) exhibit little diversity, while those in enzootic settings (e.g., 1970s Zimbabwe) can be highly diverse. In addition, the large Saudi Arabian RVF outbreak in 2000 appears to have involved virus introduction from East Africa, based on the close ancestral relationship of a 1998 East African virus. Virus genetic diversity was low (approximately 5%) and primarily involved accumulation of mutations at an average of 2.9 x 10(-4) substitutions/site/year, although some evidence of RNA segment reassortment was found. Bayesian analysis of current RVF virus genetic diversity places the most recent common ancestor of these viruses in the late 1800s, the colonial period in Africa, a time of dramatic changes in agricultural practices and introduction of nonindigenous livestock breeds. In addition to insights into the evolution and ecology of RVF virus, these genomic data also provide a foundation for the design of molecular detection assays and prototype vaccines useful in combating this important disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genetic Analysis of Viruses Associated with Emergence of Rift Valley Fever in Saudi Arabia and Yemen, 2000-01

              The first confirmed Rift Valley fever outbreak outside Africa was reported in September 2000, in the Arabian Peninsula. As of February 2001, a total of 884 hospitalized patients were identified in Saudi Arabia, with 124 deaths. In Yemen, 1,087 cases occurred, with 121 deaths. Laboratory diagnosis of Rift Valley fever virus (RVFV) infections included virus genetic detection and characterization of clinical specimens by reverse transcription-polymerase chain reaction, in addition to serologic tests and virus isolation. Genetic analysis of selected regions of virus S, M, and L RNA genome segments indicated little genetic variation among the viruses associated with disease. The Saudi Arabia and Yemen viruses were almost identical to those associated with earlier RVF epidemics in East Africa. Analysis of S, M, and L RNA genome segment sequence differences showed similar phylogenetic relationships among these viruses, indicating that genetic reassortment did not play an important role in the emergence of this virus in the Arabian Peninsula. These results are consistent with the recent introduction of RVFV into the Arabian Peninsula from East Africa.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                December 2011
                : 17
                : 12
                : 2270-2276
                Affiliations
                [1]National Institute for Communicable Diseases of the National Health Service, Sandringham, South Africa (A.A. Grobbelaar, J. Weyer, P.A Leman, A. Kemp, J.T. Paweska, R. Swanepoel);
                [2]University of Pretoria, Pretoria, South Africa (R. Swanepoel)
                Author notes
                Address for correspondence: Robert Swanepoel, Pathology Bldg, Rm 2-72, University of Pretoria, Prinshof Campus, PO Box 2034, Pretoria 0001, South Africa; email: bob.swanepoel@ 123456up.ac.za
                Article
                11-1035
                10.3201/eid1712.111035
                3311189
                22172568
                74347345-575e-4700-bb70-82a256cc43ff
                History
                Categories
                Research

                Infectious disease & Microbiology
                rift valley fever,rift valley fever virus,molecular epidemiology,phylogenetics,viruses,africa,evolution,saudi arabia

                Comments

                Comment on this article