6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thymoquinone Inhibits the Migration and Invasive Characteristics of Cervical Cancer Cells SiHa and CaSki In Vitro by Targeting Epithelial to Mesenchymal Transition Associated Transcription Factors Twist1 and Zeb1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cervical cancer is one of the most common gynecological malignant tumors worldwide, for which chemotherapeutic strategies are limited due to their non-specific cytotoxicity and drug resistance. The natural product thymoquinone (TQ) has been reported to target a vast number of signaling pathways in carcinogenesis in different cancers, and hence is regarded as a promising anticancer molecule. Inhibition of epithelial to mesenchymal transition (EMT) regulators is an important approach in anticancer research. In this study, TQ was used to treat the cervical cancer cell lines SiHa and CaSki to investigate its effects on EMT-regulatory proteins and cancer metastasis. Our results showed that TQ has time-dependent and dose-dependent cytotoxic effects, and it also inhibits the migration and invasion processes in different cervical cancer cells. At the molecular level, TQ treatment inhibited the expression of Twist1, Zeb1 expression, and increased E-Cadherin expression. Luciferase reporter assay showed that TQ decreases the Twist1 and Zeb1 promoter activities respectively, indicating that Twist1 and Zeb1 might be the direct target of TQ. TQ also increased cellular apoptosis in some extent, but apoptotic genes/proteins we tested were not significant affected. We conclude that TQ inhibits the migration and invasion of cervical cancer cells, probably via Twist1/E-Cadherin/EMT or/and Zeb1/E-Cadherin/EMT, among other signaling pathways.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A review on therapeutic potential of Nigella sativa: A miracle herb.

          Nigella sativa (N. sativa) (Family Ranunculaceae) is a widely used medicinal plant throughout the world. It is very popular in various traditional systems of medicine like Unani and Tibb, Ayurveda and Siddha. Seeds and oil have a long history of folklore usage in various systems of medicines and food. The seeds of N. sativa have been widely used in the treatment of different diseases and ailments. In Islamic literature, it is considered as one of the greatest forms of healing medicine. It has been recommended for using on regular basis in Tibb-e-Nabwi (Prophetic Medicine). It has been widely used as antihypertensive, liver tonics, diuretics, digestive, anti-diarrheal, appetite stimulant, analgesics, anti-bacterial and in skin disorders. Extensive studies on N. sativa have been carried out by various researchers and a wide spectrum of its pharmacological actions have been explored which may include antidiabetic, anticancer, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, bronchodilator, hepato-protective, renal protective, gastro-protective, antioxidant properties, etc. Due to its miraculous power of healing, N. sativa has got the place among the top ranked evidence based herbal medicines. This is also revealed that most of the therapeutic properties of this plant are due to the presence of thymoquinone which is major bioactive component of the essential oil. The present review is an effort to provide a detailed survey of the literature on scientific researches of pharmacognostical characteristics, chemical composition and pharmacological activities of the seeds of this plant.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer.

            The epithelial to mesenchymal transition (EMT) is an important step for the developmental process. Recent evidences support that EMT allows the tumor cells to acquire invasive properties and to develop metastatic growth characteristics. Some of the transcription factors, which are actively involved in EMT process, have a significant role in the EMT-metastasis linkage. A number of studies have reported that EMT-inducing transcription factors (EMT-TFs), such as Twist, Snail, Slug, and Zeb, are directly or indirectly involved in cancer cell metastasis through a different signaling cascades, including the Akt, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase (MAPK) and Wnt pathways, with the ultimate consequence of the downregulation of E-cadherin and upregulation of metastatic proteins, such as N-cadherin, vimentin, matrix metalloproteinase (MMP)-2, etc. This review summarizes the update information on the association of EMT-TFs with cancer metastasis and the possible cancer therapeutics via targeting the EMT-TFs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition

              The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                04 December 2017
                December 2017
                : 22
                : 12
                : 2105
                Affiliations
                [1 ]Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; leejun2015@ 123456foxmail.com (J.L.); asadkhan@ 123456swmu.edu.cn (M.A.K.); weichunli2013@ 123456163.com (C.W.); Jingliangc@ 123456swmu.edu.cn (J.C.); 15228233665@ 123456163.com (L.Y.); Hijaab2010@ 123456yahoo.com (I.I.)
                [2 ]State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
                [3 ]Department of Biochemistry, School of Life Sciences, Central South University, Changsha 410013, China; chenhanchun@ 123456csu.edu.cn
                [4 ]Medical College, Hunan Normal University, Changsha 410081, China
                Author notes
                [* ]Correspondence: fujunjiang@ 123456hotmail.com ; Tel.: +86-830-316-0283
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0001-7851-0500
                https://orcid.org/0000-0002-0708-2200
                Article
                molecules-22-02105
                10.3390/molecules22122105
                6149891
                29207526
                7444f7e8-b988-4a51-b28c-a2960e8777fb
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 October 2017
                : 28 November 2017
                Categories
                Article

                thymoquinone,cervical cancer,metastasis,epithelial to mesenchymal transition,twist1,zeb1,e-cadherin

                Comments

                Comment on this article