14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes are paracrine regulators of the tumor microenvironment and contain complex cargo. We previously reported that exosomes released from acute myeloid leukemia (AML) cells can suppress residual hematopoietic stem and progenitor cell (HSPC) function indirectly through stromal reprogramming of niche retention factors. We found that the systemic loss of hematopoietic function is also in part a consequence of AML exosome-directed microRNA (miRNA) trafficking to HSPCs. Exosomes isolated from cultured AML or the plasma from mice bearing AML xenografts exhibited enrichment of miR-150 and miR-155. HSPCs cocultured with either of these exosomes exhibited impaired clonogenicity, through the miR-150- and miR-155-mediated suppression of the translation of transcripts encoding c-MYB, a transcription factor involved in HSPC differentiation and proliferation. To discover additional miRNA targets, we captured miR-155 and its target transcripts by coimmunoprecipitation with an attenuated RNA-induced silencing complex (RISC)-trap, followed by high-throughput sequencing. This approach identified known and previously unknown miR-155 target transcripts. Integration of the miR-155 targets with information from the protein interaction database STRING revealed proteins indirectly affected by AML exosome-derived miRNA. Our findings indicate a direct effect of AML exosomes on HSPCs that, through a stroma-independent mechanism, compromises hematopoiesis. Furthermore, combining miRNA target data with protein-protein interaction data may be a broadly applicable strategy to define the effects of exosome-mediated trafficking of regulatory molecules within the tumor microenvironment.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche.

          Multipotent stromal cells (MSCs) and their osteoblastic lineage cell (OBC) derivatives are part of the bone marrow (BM) niche and contribute to hematopoietic stem cell (HSC) maintenance. Here, we show that myeloproliferative neoplasia (MPN) progressively remodels the endosteal BM niche into a self-reinforcing leukemic niche that impairs normal hematopoiesis, favors leukemic stem cell (LSC) function, and contributes to BM fibrosis. We show that leukemic myeloid cells stimulate MSCs to overproduce functionally altered OBCs, which accumulate in the BM cavity as inflammatory myelofibrotic cells. We identify roles for thrombopoietin, CCL3, and direct cell-cell interactions in driving OBC expansion, and for changes in TGF-β, Notch, and inflammatory signaling in OBC remodeling. MPN-expanded OBCs, in turn, exhibit decreased expression of many HSC retention factors and severely compromised ability to maintain normal HSCs, but effectively support LSCs. Targeting this pathological interplay could represent a novel avenue for treatment of MPN-affected patients and prevention of myelofibrosis. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miRWalk database for miRNA-target interactions.

            miRWalk (http://mirwalk.uni-hd.de/) is a publicly available comprehensive resource, hosting the predicted as well as the experimentally validated microRNA (miRNA)-target interaction pairs. This database allows obtaining the possible miRNA-binding site predictions within the complete sequence of all known genes of three genomes (human, mouse, and rat). Moreover, it also integrates many novel features such as a comparative platform of miRNA-binding sites resulting from ten different prediction datasets, a holistic view of genetic networks of miRNA-gene pathway, and miRNA-gene-Online Mendelian Inheritance in Man disorder interactions, and unique experimentally validated information (e.g., cell lines, diseases, miRNA processing proteins). In this chapter, we describe a schematic workflow on how one can access the stored information from miRWalk and subsequently summarize its applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia.

              We characterized leukemia stem cells (LSC) in chronic phase chronic myelogenous leukemia (CML) using a transgenic mouse model. LSC were restricted to cells with long-term hematopoietic stem cell (LTHSC) phenotype. CML LTHSC demonstrated reduced homing and retention in the bone marrow (BM), related to decreased CXCL12 expression in CML BM, resulting from increased G-CSF production by leukemia cells. Altered cytokine expression in CML BM was associated with selective impairment of normal LTHSC growth and a growth advantage to CML LTHSC. Imatinib (IM) treatment partially corrected abnormalities in cytokine levels and LTHSC growth. These results were validated using human CML samples and provide improved understanding of microenvironmental regulation of normal and leukemic LTHSC and their response to IM in CML. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Signal
                Science signaling
                American Association for the Advancement of Science (AAAS)
                1937-9145
                1945-0877
                Sep 06 2016
                : 9
                : 444
                Affiliations
                [1 ] Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA. Pediatric Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA. Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA.
                [2 ] Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA. Pediatric Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA. Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
                [3 ] Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA.
                [4 ] Department of Biology, State University of New York, Brockport, NY 14420, USA. Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA. The College at Brockport, State University of New York, Brockport, NY 14420, USA.
                [5 ] Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
                [6 ] Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA. Pediatric Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA. Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA. Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA. kurrepe@ohsu.edu.
                Article
                9/444/ra88
                10.1126/scisignal.aaf2797
                27601730
                74748697-1be1-40ba-8beb-6cdfd807df1f
                History

                Comments

                Comment on this article