0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using artificial neural networks to predict riming from Doppler cloud radar observations

      , , , , ,
      Atmospheric Measurement Techniques
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Riming, i.e., the accretion and freezing of supercooled liquid water (SLW) on ice particles in mixed-phase clouds, is an important pathway for precipitation formation. Detecting and quantifying riming using ground-based cloud radar observations is of great interest; however, approaches based on measurements of the mean Doppler velocity (MDV) are unfeasible in convective and orographically influenced cloud systems. Here, we show how artificial neural networks (ANNs) can be used to predict riming using ground-based, zenith-pointing cloud radar variables as input features. ANNs are a versatile means to extract relations from labeled data sets, which contain input features along with the expected target values. Training data are extracted from a data set acquired during winter 2014 in Finland, containing both Ka- and W-band cloud radar and in situ observations of snowfall by a Precipitation Imaging Package from which the rime mass fraction (FRPIP) is retrieved. ANNs are trained separately either on the Ka-band radar or the W-band radar data set to predict the rime fraction FRANN. We focus on two configurations of input variables. ANN 1 uses the equivalent radar reflectivity factor (Ze), MDV, the width from left to right edge of the spectrum above the noise floor (spectrum edge width – SEW), and the skewness as input features. ANN 2 only uses Ze, SEW, and skewness. The application of these two ANN configurations to case studies from different data sets demonstrates that both are able to predict strong riming (FRANN > 0.7) and yield low values (FRANN ≤ 0.4) for unrimed snow. In general, the predictions of ANN 1 and 2 are very similar, advocating the capability of predicting riming without the use of MDV. The predictions of both ANNs for a wintertime convective cloud fit with coinciding in situ observations extremely well, suggesting the possibility to predict riming even within convective systems. Application of ANN 2 to an orographic case yields high FRANN values coinciding with observations of solid graupel particles at the ground.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          Cloudnet

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Observational constraints on mixed-phase clouds imply higher climate sensitivity

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Atmospheric Measurement Techniques
                Atmos. Meas. Tech.
                Copernicus GmbH
                1867-8548
                2022
                January 24 2022
                : 15
                : 2
                : 365-381
                Article
                10.5194/amt-15-365-2022
                747f4263-2035-4cbe-9f6e-ad8175b4bb8d
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article