28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decoupling Internalization, Acidification and Phagosomal-Endosomal/lysosomal Fusion during Phagocytosis of InlA Coated Beads in Epithelial Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Phagocytosis has been extensively examined in ‘professional’ phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in ‘non-professional’ phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells.

          Methodology/Principal Findings

          Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification.

          Conclusions/Significance

          Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23–32 min, 3–4 min and 74–120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply require fluorophore conjugation to a particle of interest, such as a pathogen or mimetic, in combination with common cell labeling dyes. As such, these methods hold promise for future measurements of receptor-mediated internalization in other cell systems, e.g. pathogen-host systems.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents.

          A quantitative method is described for the measurement of intralysosomal pH in living cells. Fluorescein isothiocyanate-labeled dextran (FD) is endocytized and accumulates in lysosomes where it remains without apparent degradation. The fluorescence spectrum of this compound changes with pH in the range 4-7 and is not seriously affected by FD concentration, ionic strength, or protein concentration. Living cells on coverslips are mounted in a spectrofluorometer cell and can be perfused with various media. The normal pH inside macrophage lysosomes seems to be 4.7-4.8, although it can drop transiently as low as 4.5. Exposure of the cells to various weak bases and to acidic potassium ionophores causes the pH to increase. The changes in pH are much more rapid than is the intralysosomal accumulation of the weak bases. Inhibitors of glycolysis (2-deoxyglucose) and of oxidative phosphorylation (cyanide or azide) added together, but not separately, cause the intralysosomal pH to increase. These results provide evidence for the existence of an active proton accumulation mechanism in the lysosomal membrane and support the theory of lysosomal accumulation of weak bases by proton trapping.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phagosome maturation: aging gracefully.

            Foreign particles and apoptotic bodies are eliminated from the body by phagocytic leucocytes. The initial stage of the elimination process is the internalization of the particles into a plasma membrane-derived vacuole known as the phagosome. Such nascent phagosomes, however, lack the ability to kill pathogens or to degrade the ingested targets. These properties are acquired during the course of phagosomal maturation, a complex sequence of reactions that result in drastic remodelling of the phagosomal membrane and contents. The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells.

              We report the first identification of a cellular receptor mediating entry of a gram-positive bacterium into nonphagocytotic cells. By an affinity chromatography approach, we identified E-cadherin as the ligand for internalin, an L. monocytogenes protein essential for entry into epithelial cells. Expression of the chicken homolog of E-cadherin (L-CAM) in transfected fibroblasts dramatically increases entry of L. monocytogenes and promotes that of a recombinant L. innocua strain expressing internalin but does not promote entry of the wild-type noninvasive L. innocua or that of an internalin-deficient mutant of L. monocytogenes. Furthermore, L-CAM-specific antibodies block internalin-mediated entry. In contrast to Salmonella, Listeria enters cells by a mechanism of induced phagocytosis occurring without membrane ruffling. This work reveals a novel type of heterophilic interactions for E-cadherin.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                26 June 2009
                : 4
                : 6
                : e6056
                Affiliations
                [1]Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
                University of Birmingham, United Kingdom
                Author notes

                Conceived and designed the experiments: CDB ALH. Performed the experiments: CDB. Analyzed the data: CDB. Contributed reagents/materials/analysis tools: YHW CT NS TAS ALH. Wrote the paper: CDB ALH. Provided the funding to conduct experiments and managed the experiments: ALH. Helped edit the manuscript: YHW NS TAS.

                [¤]

                Current address: School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America

                Article
                08-PONE-RA-07966R1 - CORRECTION
                10.1371/journal.pone.0006056
                2699028
                19557127
                74bcd311-3f8d-47fc-94e0-ca4d52555baf
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 30 December 2008
                : 5 June 2009
                Page count
                Pages: 13
                Categories
                Research Article
                Biophysics
                Cell Biology/Chemical Biology of the Cell
                Immunology/Cellular Microbiology and Pathogenesis
                Microbiology/Cellular Microbiology and Pathogenesis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article