39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of TGF-β/SMAD4 signaling in cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transforming growth factor β (TGF-β) signaling pathway plays important roles in many biological processes, including cell growth, differentiation, apoptosis, migration, as well as cancer initiation and progression. SMAD4, which serves as the central mediator of TGF-β signaling, is specifically inactivated in over half of pancreatic duct adenocarcinoma, and varying degrees in many other types of cancers. In the past two decades, multiple studies have revealed that SMAD4 loss on its own does not initiate tumor formation, but can promote tumor progression initiated by other genes, such as KRAS activation in pancreatic duct adenocarcinoma and APC inactivation in colorectal cancer. In other cases, such as skin cancer, loss of SMAD4 plays an important initiating role by disrupting DNA damage response and repair mechanisms and enhance genomic instability, suggesting its distinct roles in different types of tumors. This review lists SMAD4 mutations in various types of cancer and summarizes recent advances on SMAD4 with focuses on the function, signaling pathway, and the possibility of SMAD4 as a prognostic indicator.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: not found
          • Article: not found

          Transcriptional control by the TGF-beta/Smad signaling system.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.

            About 90 percent of human pancreatic carcinomas show allelic loss at chromosome 18q. To identify candidate tumor suppressor genes on 18q, a panel of pancreatic carcinomas were analyzed for convergent sites of homozygous deletion. Twenty-five of 84 tumors had homozygous deletions at 18q21.1, a site that excludes DCC (a candidate suppressor gene for colorectal cancer) and includes DPC4, a gene similar in sequence to a Drosophila melanogaster gene (Mad) implicated in a transforming growth factor-beta (TGF-beta)-like signaling pathway. Potentially inactivating mutations in DPC4 were identified in six of 27 pancreatic carcinomas that did not have homozygous deletions at 18q21.1. These results identify DPC4 as a candidate tumor suppressor gene whose inactivation may play a role in pancreatic and possibly other human cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signal transduction by the TGF-beta superfamily.

              Transforming growth factor-beta (TGF-beta) superfamily members regulate a plethora of developmental processes, and disruption of their activity has been implicated in a variety of human diseases ranging from cancer to chondrodysplasias and pulmonary hypertension. Intense investigations have revealed that SMAD proteins constitute the basic components of the core intracellular signaling cascade and that SMADs function by carrying signals from the cell surface directly to the nucleus. Recent insights have revealed how SMAD proteins themselves are regulated and how appropriate subcellular localization of SMADs and TGF-beta transmembrane receptors is controlled. Current research efforts investigating the contribution of SMAD-independent pathways promise to reveal advances to enhance our understanding of the signaling cascade.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2018
                12 January 2018
                : 14
                : 2
                : 111-123
                Affiliations
                [1 ]Faculty of Health Sciences, University of Macau, Macau SAR, China;
                [2 ]Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
                [3 ]Center for Translational Research, Department of Surgery and GW Cancer Center, George Washington University, Washington DC, USA.
                Author notes
                ✉ Corresponding authors: Lopa Mishra, MD; Director, Center for Translational Medicine; Professor, Surgery and GW Cancer Center; George Washington University and VAMC, Washington DC. lopamishra2@ 123456gmail.com , lmishra@ 123456gwu.edu and Chu-Xia Deng, PhD. Faculty of Health Sciences, University of Macau, Macau SAR, China. cxdeng@ 123456umac.mo

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv14p0111
                10.7150/ijbs.23230
                5821033
                29483830
                74d524de-d95c-44f0-9426-1602dadfcc55
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 8 October 2017
                : 19 November 2017
                Categories
                Review

                Life sciences
                tgf-β,smad4,tumorigenesis,prognosis,mouse model
                Life sciences
                tgf-β, smad4, tumorigenesis, prognosis, mouse model

                Comments

                Comment on this article