13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Status of high-latitude precipitation estimates from observations and reanalyses : HIGH-LATITUDE PRECIPITATION

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">An intercomparison of high-latitude precipitation characteristics from observation-based and reanalysis products is performed. In particular the precipitation products from CloudSat provide an independent assessment to other widely used products, these being the observationally-based GPCP, GPCC and CMAP products and the ERA-Interim, MERRA and NCEP-DOE R2 reanalyses. Seasonal and annual total precipitation in both hemispheres poleward of 55° latitude is considered in all products, and CloudSat is used to assess intensity and frequency of precipitation occurrence by phase, defined as rain, snow or mixed phase. Furthermore, an independent estimate of snow accumulation during the cold season was calculated from the Gravity Recovery and Climate Experiment (GRACE). The intercomparison is performed for the 2007–2010 period when CloudSat was fully operational. It is found that ERA- Interim and MERRA are broadly similar, agreeing more closely with CloudSat over oceans. ERA-Interim also agrees well with CloudSat estimates of snowfall over Antarctica where total snowfall from GPCP and CloudSat is almost identical. A number of disagreements on regional or seasonal scales are identified: CMAP reports much lower ocean precipitation relative to other products, NCEP-DOE R2 reports much higher summer precipitation over northern hemisphere land, GPCP reports much higher snowfall over Eurasia, and CloudSat overestimates precipitation over Greenland, likely due to mischaracterization of rain and mixed-phase precipitation. These outliers are likely unrealistic for these specific regions and time periods. These estimates from observations and reanalyses provide useful insights for diagnostic assessment of precipitation products in high latitudes, quantifying the current uncertainties, improving the products, and establishing a benchmark for assessment of climate models. </p>

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Summarizing multiple aspects of model performance in a single diagram

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GRACE measurements of mass variability in the Earth system.

            Monthly gravity field estimates made by the twin Gravity Recovery and Climate Experiment (GRACE) satellites have a geoid height accuracy of 2 to 3 millimeters at a spatial resolution as small as 400 kilometers. The annual cycle in the geoid variations, up to 10 millimeters in some regions, peaked predominantly in the spring and fall seasons. Geoid variations observed over South America that can be largely attributed to surface water and groundwater changes show a clear separation between the large Amazon watershed and the smaller watersheds to the north. Such observations will help hydrologists to connect processes at traditional length scales (tens of kilometers or less) to those at regional and global scales.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Global Precipitation Measurement Mission

                Bookmark

                Author and article information

                Journal
                Journal of Geophysical Research: Atmospheres
                J. Geophys. Res. Atmos.
                Wiley-Blackwell
                2169897X
                May 16 2016
                May 16 2016
                : 121
                : 9
                : 4468-4486
                Article
                10.1002/2015JD024546
                6048444
                30027024
                74f2e6b4-1368-414d-8f56-670734a6b977
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article