8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional connectivity of hippocampal subregions in PTSD: relations with symptoms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Posttraumatic stress disorder (PTSD) is associated with abnormal hippocampal activity; however, the functional connectivity (FC) of the hippocampus with other brain regions in PTSD and its relations with symptoms warrants further attention. We investigated subregional hippocampal FC in PTSD during a resting state compared with a trauma-exposed control (TEC) group. Based on extant research, we targeted the FCs of the anterior and posterior hippocampal subregions with the amygdala, medial prefrontal cortex (mPFC), and the posterior cingulate (PCC).

          Methods

          Resting-state functional magnetic resonance images were acquired from 11 individuals with PTSD and 13 trauma-exposed controls. Anterior and posterior hippocampal FC was compared between groups. Within the PTSD and TEC groups, subregional hippocampal FC was correlated with scores on the Clinician-Administered PTSD Scale (CAPS) at time of scan and 4 months post-scan.

          Results

          Those with PTSD had significantly greater FC compared with the TEC group between the left posterior hippocampus and the bilateral PCC ( g’s > .96). Direct contrasts of the Fisher z-transformed coefficients indicated that the correlations between CAPS scores 4 months post scan and the FC between the left hippocampal head and the right PCC (z = − 2.07, p = .039) as well as the FC between the right hippocampal tail and the right mPFC (z = − 2.19, p = .029) were significantly greater in the PTSD group compared to the TEC group.

          Conclusions

          These results support between-group differences in posterior hippocampal FC and different relations with PTSD future symptoms, underscoring associations with the anterior and posterior hippocampus. These findings enrich our understanding of PTSD pathophysiology and provide support for future investigations of imaging biomarkers predictive of disease progression.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future.

          The prevailing neurocircuitry models of anxiety disorders have been amygdalocentric in form. The bases for such models have progressed from theoretical considerations, extrapolated from research in animals, to in vivo human imaging data. For example, one current model of posttraumatic stress disorder (PTSD) has been highly influenced by knowledge from rodent fear conditioning research. Given the phenomenological parallels between fear conditioning and the pathogenesis of PTSD, we have proposed that PTSD is characterized by exaggerated amygdala responses (subserving exaggerated acquisition of fear associations and expression of fear responses) and deficient frontal cortical function (mediating deficits in extinction and the capacity to suppress attention/response to trauma-related stimuli), as well as deficient hippocampal function (mediating deficits in appreciation of safe contexts and explicit learning/memory). Neuroimaging studies have yielded convergent findings in support of this model. However, to date, neuroimaging investigations of PTSD have not principally employed conditioning and extinction paradigms per se. The recent development of such imaging probes now sets the stage for directly testing hypotheses regarding the neural substrates of fear conditioning and extinction abnormalities in PTSD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resting-state functional connectivity in neuropsychiatric disorders.

            This review considers recent advances in the application of resting-state functional magnetic resonance imaging to the study of neuropsychiatric disorders. Resting-state functional magnetic resonance imaging is a relatively novel technique that has several potential advantages over task-activation functional magnetic resonance imaging in terms of its clinical applicability. A number of research groups have begun to investigate the use of resting-state functional magnetic resonance imaging in a variety of neuropsychiatric disorders including Alzheimer's disease, depression, and schizophrenia. Although preliminary results have been fairly consistent in some disorders (for example, Alzheimer's disease) they have been less reproducible in others (schizophrenia). Resting-state connectivity has been shown to correlate with behavioral performance and emotional measures. It's potential as a biomarker of disease and an early objective marker of treatment response is genuine but still to be realized. Resting-state functional magnetic resonance imaging has made some strides in the clinical realm but significant advances are required before it can be used in a meaningful way at the single-patient level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-axis specialization of the human hippocampus.

              Investigation of the hippocampus has historically focused on computations within the trisynaptic circuit. However, discovery of important anatomical and functional variability along its long axis has inspired recent proposals of long-axis functional specialization in both the animal and human literatures. Here, we review and evaluate these proposals. We suggest that various long-axis specializations arise out of differences between the anterior (aHPC) and posterior hippocampus (pHPC) in large-scale network connectivity, the organization of entorhinal grid cells, and subfield compositions that bias the aHPC and pHPC towards pattern completion and separation, respectively. The latter two differences give rise to a property, reflected in the expression of multiple other functional specializations, of coarse, global representations in anterior hippocampus and fine-grained, local representations in posterior hippocampus. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                bmalivoire@psych.ryerson.ca
                tgirard@psych.ryerson.ca
                rpatel4@exchange.hsc.mb.ca
                candice.monson@psych.ryerson.ca
                Journal
                BMC Psychiatry
                BMC Psychiatry
                BMC Psychiatry
                BioMed Central (London )
                1471-244X
                15 May 2018
                15 May 2018
                2018
                : 18
                : 129
                Affiliations
                [1 ]ISNI 0000 0004 1936 9422, GRID grid.68312.3e, Department of Psychology, , Ryerson University, ; 350 Victoria St, Toronto, ON M5B 2K3 Canada
                [2 ]ISNI 0000 0004 1936 9609, GRID grid.21613.37, Department of Clinical Health Psychology, , University of Manitoba, ; Winnipeg, MB Canada
                Article
                1716
                10.1186/s12888-018-1716-9
                5952576
                29764396
                7506ea35-4706-47c2-b54e-3e1a9144caa0
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 13 October 2017
                : 2 May 2018
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2018

                Clinical Psychology & Psychiatry
                posttraumatic stress disorder,functional magnetic resonance imaging,hippocampus,trauma symptoms,resting state connectivity

                Comments

                Comment on this article