6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of the Predictability and Accuracy of Orthognathic Surgery in the Era of Virtual Surgical Planning

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Virtual surgical planning allows orthognathic surgeons to design a surgical plan preoperatively and establish a personalized surgical protocol. This study aims to validate the predictability and accuracy of orthognathic surgery through a comparison of the three-dimensional (3D) models of the virtual planning and postoperative CBCT using free software (3D Slicer) on 40 patients who underwent bimaxillary orthognathic surgery. The distances of point A, point B, pogonion (Pog), and the first upper and lower molars, both in each axis (x, y, and z) and in the 3D space, were analyzed. The median of the distances in the mediolateral direction was the lowest, while the highest differences were found at point A and Pog in the anteroposterior direction (0.83 mm and 0.78 mm, respectively). Vertical differences were higher in the maxilla than in the mandible. In conclusion, we found that orthognathic bimaxillary surgery using virtual surgical planning was more accurate when positioning the bone segments in the mediolateral direction, using the information provided by the splint, as well as when positioning the mandible compared to the maxilla.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          3D Slicer as an image computing platform for the Quantitative Imaging Network.

          Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open-source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future directions that can further facilitate development and validation of imaging biomarkers using 3D Slicer. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study.

            The purpose of this prospective multicenter study was to assess the accuracy of a computer-aided surgical simulation (CASS) protocol for orthognathic surgery. The accuracy of the CASS protocol was assessed by comparing planned outcomes with postoperative outcomes of 65 consecutive patients enrolled from 3 centers. Computer-generated surgical splints were used for all patients. For the genioplasty, 1 center used computer-generated chin templates to reposition the chin segment only for patients with asymmetry. Standard intraoperative measurements were used without the chin templates for the remaining patients. The primary outcome measurements were the linear and angular differences for the maxilla, mandible, and chin when the planned and postoperative models were registered at the cranium. The secondary outcome measurements were the maxillary dental midline difference between the planned and postoperative positions and the linear and angular differences of the chin segment between the groups with and without the use of the template. The latter were measured when the planned and postoperative models were registered at the mandibular body. Statistical analyses were performed, and the accuracy was reported using root mean square deviation (RMSD) and the Bland-Altman method for assessing measurement agreement. In the primary outcome measurements, there was no statistically significant difference among the 3 centers for the maxilla and mandible. The largest RMSDs were 1.0 mm and 1.5° for the maxilla and 1.1 mm and 1.8° for the mandible. For the chin, there was a statistically significant difference between the groups with and without the use of the chin template. The chin template group showed excellent accuracy, with the largest positional RMSD of 1.0 mm and the largest orientation RMSD of 2.2°. However, larger variances were observed in the group not using the chin template. This was significant in the anteroposterior and superoinferior directions and the in pitch and yaw orientations. In the secondary outcome measurements, the RMSD of the maxillary dental midline positions was 0.9 mm. When registered at the body of the mandible, the linear and angular differences of the chin segment between the groups with and without the use of the chin template were consistent with the results found in the primary outcome measurements. Using this computer-aided surgical simulation protocol, the computerized plan can be transferred accurately and consistently to the patient to position the maxilla and mandible at the time of surgery. The computer-generated chin template provides greater accuracy in repositioning the chin segment than the intraoperative measurements. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional treatment planning of orthognathic surgery in the era of virtual imaging.

              The aim of this report was to present an integrated 3-dimensional (3D) virtual approach toward cone-beam computed tomography-based treatment planning of orthognathic surgery in the clinical routine. We have described the different stages of the workflow process for routine 3D virtual treatment planning of orthognathic surgery: 1) image acquisition for 3D virtual orthognathic surgery; 2) processing of acquired image data toward a 3D virtual augmented model of the patient's head; 3) 3D virtual diagnosis of the patient; 4) 3D virtual treatment planning of orthognathic surgery; 5) 3D virtual treatment planning communication; 6) 3D splint manufacturing; 7) 3D virtual treatment planning transfer to the operating room; and 8) 3D virtual treatment outcome evaluation. The potential benefits and actual limits of an integrated 3D virtual approach for the treatment of the patient with a maxillofacial deformity are discussed comprehensively from our experience using 3D virtual treatment planning clinically.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                May 2022
                April 24 2022
                : 12
                : 9
                : 4305
                Article
                10.3390/app12094305
                758c9b15-49e3-43f6-bffa-2897a20ac348
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article