Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Detecting and targeting tumor relapse by its resistance to innate effectors at early recurrence

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumor recurrence represents a major clinical challenge. Our data show that emergent recurrent tumors acquire a phenotype radically different from that of their originating primary tumors. This phenotype allows them to evade a host-derived innate immune response elicited by the progression from minimal residual disease (MRD) to actively growing recurrence. Screening for this innate response predicted accurately in which mice recurrence would occur. Premature induction of recurrence resensitized MRD to the primary therapy, suggesting a possible paradigm shift for clinical treatment of dormant disease in which the current expectant approach is replaced with active attempts to uncover MRD before evolution of the escape phenotype is complete. By combining screening with second-line treatments targeting innate insensitivity, up to 100% of mice that would have otherwise relapsed were cured. These data may open new avenues for early detection and appropriately timed, highly targeted treatment of tumor recurrence irrespective of tumor type or frontline treatment.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          T cell receptor antagonist peptides induce positive selection.

          We have used organ culture of fetal thymic lobes from T cell receptor (TCR) transgenic beta 2M(-/-) mice to study the role of peptides in positive selection. The TCR used was from a CD8+ T cell specific for ovalbumin 257-264 in the context of Kb. Several peptides with the ability to induce positive selection were identified. These peptide-selected thymocytes have the same phenotype as mature CD8+ T cells and can respond to antigen. Those peptides with the ability to induce positive selection were all variants of the antigenic peptide and were identified as TCR antagonist peptides for this receptor. One peptide tested, E1, induced positive selection on the beta 2M(-/-) background but negative selection on the beta 2M(+/-) background. These results show that the process of positive selection is exquisitely peptide specific and sensitive to extremely low ligand density and support the notion that low efficacy ligands mediate positive selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ONCOLYTIC VIROTHERAPY

            Oncolytic virotherapy is an emerging treatment modality which uses replication competent viruses to destroy cancers. Advances in the past two years include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, new strategies to maximize the immunotherapeutic potential of oncolytic virotherapy, and clinical confirmation of a critical viremic thereshold for vascular delivery and intratumoral virus replication. The primary clinical milestone was completion of accrual in a phase III trial of intratumoral herpes simplex virus therapy using talimogene laherparepvec for metastatic melanoma. Challenges for the field are to select ‘winners’ from a burgeoning number of oncolytic platforms and engineered derivatives, to transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity, to develop more meaningful preclinical virotherapy models and to manufacture viruses with orders of magnitude higher yields compared to established vaccine manufacturing processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Models, mechanisms and clinical evidence for cancer dormancy.

              Patients with cancer can develop recurrent metastatic disease with latency periods that range from years even to decades. This pause can be explained by cancer dormancy, a stage in cancer progression in which residual disease is present but remains asymptomatic. Cancer dormancy is poorly understood, resulting in major shortcomings in our understanding of the full complexity of the disease. Here, I review experimental and clinical evidence that supports the existence of various mechanisms of cancer dormancy including angiogenic dormancy, cellular dormancy (G0-G1 arrest) and immunosurveillance. The advances in this field provide an emerging picture of how cancer dormancy can ensue and how it could be therapeutically targeted.
                Bookmark

                Author and article information

                Journal
                Nature Medicine
                Nat Med
                Springer Science and Business Media LLC
                1078-8956
                1546-170X
                December 2013
                November 17 2013
                December 2013
                : 19
                : 12
                : 1625-1631
                Article
                10.1038/nm.3397
                3891504
                24240185
                75c2156a-d1df-4f8c-8df3-89d15387adc2
                © 2013

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article