14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Planting Patterns and Deficit Irrigation Strategies to Improve Wheat Production and Water Use Efficiency under Simulated Rainfall Conditions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ridge furrow (RF) rainwater harvesting system is an efficient way to enhance rainwater accessibility for crops and increase winter wheat productivity in semi-arid regions. However, the RF system has not been promoted widely in the semi-arid regions, which primarily exist in remote hilly areas. To exploit its efficiency on a large-scale, the RF system needs to be tested at different amounts of simulated precipitation combined with deficit irrigation. Therefore, in during the 2015–16 and 2016–17 winter wheat growing seasons, we examined the effects of two planting patterns: (1) the RF system and (2) traditional flat planting (TF) with three deficit irrigation levels (150, 75, 0 mm) under three simulated rainfall intensity (1: 275, 2: 200, 3: 125 mm), and determined soil water storage profile, evapotranspiration rate, grain filling rate, biomass, grain yield, and net economic return. Over the two study years, the RF treatment with 200 mm simulated rainfall and 150 mm deficit irrigation (RF2 150) significantly ( P < 0.05) increased soil water storage in the depth of (200 cm); reduced ET at the field scale by 33%; increased total dry matter accumulation per plant; increased the grain-filling rate; and improved biomass (11%) and grain (19%) yields. The RF2 150 treatment thus achieved a higher WUE (76%) and RIWP (21%) compared to TF. Grain-filling rates, grain weight of superior and inferior grains, and net economic profit of winter wheat responded positively to simulated rainfall and deficit irrigation under both planting patterns. The 200 mm simulated rainfall amount was more economical than other precipitation amounts, and led to slight increases in soil water storage, total dry matter per plant, and grain yield; there were no significant differences when the simulated rainfall was increased beyond 200 mm. The highest (12,593 Yuan ha −1) net income profit was attained using the RF system at 200 mm rainfall and 150 mm deficit irrigation, which also led to significantly higher grain yield, WUE, and RIWP than all other treatments. Thus, we recommend the RF2 150 treatment for higher productivity, income profit, and improve WUE in the dry-land farming system of China.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          A Flexible Growth Function for Empirical Use

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deficit irrigation for reducing agricultural water use.

            At present and more so in the future, irrigated agriculture will take place under water scarcity. Insufficient water supply for irrigation will be the norm rather than the exception, and irrigation management will shift from emphasizing production per unit area towards maximizing the production per unit of water consumed, the water productivity. To cope with scarce supplies, deficit irrigation, defined as the application of water below full crop-water requirements (evapotranspiration), is an important tool to achieve the goal of reducing irrigation water use. While deficit irrigation is widely practised over millions of hectares for a number of reasons - from inadequate network design to excessive irrigation expansion relative to catchment supplies - it has not received sufficient attention in research. Its use in reducing water consumption for biomass production, and for irrigation of annual and perennial crops is reviewed here. There is potential for improving water productivity in many field crops and there is sufficient information for defining the best deficit irrigation strategy for many situations. One conclusion is that the level of irrigation supply under deficit irrigation should be relatively high in most cases, one that permits achieving 60-100% of full evapotranspiration. Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers' profits. Research linking the physiological basis of these responses to the design of RDI strategies is likely to have a significant impact in increasing its adoption in water-limited areas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Grain-filling problem in 'super' rice.

              Modern rice (Oryza sativa L.) cultivars, especially the newly bred 'super' rice, have numerous spikelets on a panicle with a large yield capacity. However, these cultivars often fail to achieve their high yield potential due to poor grain-filling of later-flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). Conventional thinking to explain the poor grain-filling is the consequence of carbon limitation. Recent studies, however, have shown that carbohydrate supply should not be the major problem because they have adequate sucrose at their initial grain-filling stage. The low activities of key enzymes in carbon metabolism may contribute to the poor grain-filling. Proper field practices, such as moderate soil drying during mid- and late grain-filling stages, could solve some problems in poor grain-filling. Further studies are needed by molecular approaches to investigate the signal transport, the hormonal action, the gene expressions, and the biochemical processes in inferior spikelets.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                22 August 2017
                2017
                : 8
                : 1408
                Affiliations
                [1] 1Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University Yangling, China
                [2] 2Key Laboratory of Crop Physi-ecology and Tillage Science in North-western Loess Plateau, Ministry of Agriculture, Northwest A&F University Yangling, China
                Author notes

                Edited by: Urs Feller, University of Bern, Switzerland

                Reviewed by: Zorica Jovanovic, Faculty of Agriculture, University of Belgrade, Serbia; Marcello Mastrorilli, Council for Agricultural Research and Economics (CREA), Italy

                *Correspondence: Tie Cai 282590070@ 123456qq.com

                This article was submitted to Agroecology and Land Use Systems, a section of the journal Frontiers in Plant Science

                †These authors have contributed equally to this work.

                Article
                10.3389/fpls.2017.01408
                5572266
                28878787
                7600461f-8c04-4e60-b161-9b0023f2578b
                Copyright © 2017 Ali, Xu, Ma, Ahmad, Kamran, Dong, Cai, Jia, Ren, Zhang and Jia.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 June 2017
                : 31 July 2017
                Page count
                Figures: 6, Tables: 5, Equations: 10, References: 58, Pages: 17, Words: 12106
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                deficit irrigation,simulated rainfall,winter wheat yields,planting patterns,grain filling rate,wue,economic profits

                Comments

                Comment on this article