18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Early developmental and stress responsive ESTs from mungbean, Vigna radiata (L.) Wilczek, seedlings.

      Plant Cell Reports
      Adaptation, Physiological, genetics, Cold Temperature, DNA, Complementary, chemistry, Expressed Sequence Tags, Fabaceae, growth & development, Gene Library, Genome, Plant, Molecular Sequence Data, Polymerase Chain Reaction, Seedling, Sequence Analysis, DNA

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although mungbean (Vigna radiata (L.) Wilczek) is commonly used as human food; the genomic resources of this species available in databases are limited. This study aims to develop expressed sequence tag (EST) resources for mungbean genes informative to early seedling development and chilling response. Two mungbean varieties that differ in disease resistance were found to also differ in their susceptibility to chilling temperatures. A total of 1,198 ESTs were obtained from one cDNA library and four PCR-select cDNA subtraction libraries; among these 523 were clustered into 136 contigs and 675 were singletons. The 811 non-redundant uniESTs were compared to GenBank using the Basic Local Alignment Search Tool (BLAST) and WU-BLAST algorithms, of these only 489 uniESTs had significant sequence homology, which may be involved in resuming the metabolic activity of seedlings, switching on photomorphogenesis, fuelling photosynthesis and/or initiating the unique developmental programs. Their encoded proteins may associate with regulatory proteins to trigger a direct stress response or participate in acclimation to environmental stressors. The uniEST platform reported will enrich the genomic resources of mungbean for functional genomic research on seedling development and chilling response of tropical crops and provide targets for improving the chilling tolerance of the tropical crops.

          Related collections

          Author and article information

          Comments

          Comment on this article