24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of a Novel Risk Locus for Multiple Sclerosis at 13q31.3 by a Pooled Genome-Wide Scan of 500,000 Single Nucleotide Polymorphisms

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system with an important genetic component and strongest association driven by the HLA genes. We performed a pooling-based genome-wide association study of 500,000 SNPs in order to find new loci associated with the disease. After applying several criteria, 320 SNPs were selected from the microarrays and individually genotyped in a first and independent Spanish Caucasian replication cohort. The 8 most significant SNPs validated in this cohort were also genotyped in a second US Caucasian replication cohort for confirmation. The most significant association was obtained for SNP rs3129934, which neighbors the HLA-DRB/DQA loci and validates our pooling-based strategy. The second strongest association signal was found for SNP rs1327328, which resides in an unannotated region of chromosome 13 but is in linkage disequilibrium with nearby functional elements that may play important roles in disease susceptibility. This region of chromosome 13 has not been previously identified in MS linkage genome screens and represents a novel risk locus for the disease.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Risk alleles for multiple sclerosis identified by a genomewide study.

          Multiple sclerosis has a clinically significant heritable component. We conducted a genomewide association study to identify alleles associated with the risk of multiple sclerosis. We used DNA microarray technology to identify common DNA sequence variants in 931 family trios (consisting of an affected child and both parents) and tested them for association. For replication, we genotyped another 609 family trios, 2322 case subjects, and 789 control subjects and used genotyping data from two external control data sets. A joint analysis of data from 12,360 subjects was performed to estimate the overall significance and effect size of associations between alleles and the risk of multiple sclerosis. A transmission disequilibrium test of 334,923 single-nucleotide polymorphisms (SNPs) in 931 family trios revealed 49 SNPs having an association with multiple sclerosis (P<1x10(-4)); of these SNPs, 38 were selected for the second-stage analysis. A comparison between the 931 case subjects from the family trios and 2431 control subjects identified an additional nonoverlapping 32 SNPs (P<0.001). An additional 40 SNPs with less stringent P values (<0.01) were also selected, for a total of 110 SNPs for the second-stage analysis. Of these SNPs, two within the interleukin-2 receptor alpha gene (IL2RA) were strongly associated with multiple sclerosis (P=2.96x10(-8)), as were a nonsynonymous SNP in the interleukin-7 receptor alpha gene (IL7RA) (P=2.94x10(-7)) and multiple SNPs in the HLA-DRA locus (P=8.94x10(-81)). Alleles of IL2RA and IL7RA and those in the HLA locus are identified as heritable risk factors for multiple sclerosis. Copyright 2007 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC.

            The proteins encoded by the classical HLA class I and class II genes in the major histocompatibility complex (MHC) are highly polymorphic and are essential in self versus non-self immune recognition. HLA variation is a crucial determinant of transplant rejection and susceptibility to a large number of infectious and autoimmune diseases. Yet identification of causal variants is problematic owing to linkage disequilibrium that extends across multiple HLA and non-HLA genes in the MHC. We therefore set out to characterize the linkage disequilibrium patterns between the highly polymorphic HLA genes and background variation by typing the classical HLA genes and >7,500 common SNPs and deletion-insertion polymorphisms across four population samples. The analysis provides informative tag SNPs that capture much of the common variation in the MHC region and that could be used in disease association studies, and it provides new insight into the evolutionary dynamics and ancestral origins of the HLA loci and their haplotypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis.

              Multiple sclerosis is a demyelinating neurodegenerative disease with a strong genetic component. Previous genetic risk studies have failed to identify consistently linked regions or genes outside of the major histocompatibility complex on chromosome 6p. We describe allelic association of a polymorphism in the gene encoding the interleukin 7 receptor alpha chain (IL7R) as a significant risk factor for multiple sclerosis in four independent family-based or case-control data sets (overall P = 2.9 x 10(-7)). Further, the likely causal SNP, rs6897932, located within the alternatively spliced exon 6 of IL7R, has a functional effect on gene expression. The SNP influences the amount of soluble and membrane-bound isoforms of the protein by putatively disrupting an exonic splicing silencer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                22 October 2008
                : 3
                : 10
                : e3490
                Affiliations
                [1 ]Unitat de Neuroimmunologia Clínica (UNIC), CEM-Cat, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
                [2 ]Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
                [3 ]Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
                [4 ]National Institute for Bioinformatics (INB), Barcelona, Spain
                [5 ]Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
                [6 ]National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
                Baylor College of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: MC DWC MCT JR XM RM. Performed the experiments: MC MCT CL. Analyzed the data: MC DWC CM AN. Contributed reagents/materials/analysis tools: DWC BSG XM. Wrote the paper: MC DWC JR RM.

                [¤]

                Current address: Institute for Neuroimmunology and Clinical MS Research, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Eppendorf, Hamburg, Germany

                Article
                08-PONE-RA-04031R2
                10.1371/journal.pone.0003490
                2566815
                18941528
                76176066-2297-45c6-a050-4a71119a9ffc
                Comabella et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 March 2008
                : 4 September 2008
                Page count
                Pages: 9
                Categories
                Research Article
                Immunology
                Genetics and Genomics/Complex Traits
                Neurological Disorders/Multiple Sclerosis and Related Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article