10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Liver Phenotypes of European Adults Heterozygous or Homozygous for Pi∗Z Variant of AAT (Pi∗MZ vs Pi∗ZZ genotype) and Noncarriers

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Gastroenterology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Design and validation of a histological scoring system for nonalcoholic fatty liver disease.

          Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis in the absence of a history of significant alcohol use or other known liver disease. Nonalcoholic steatohepatitis (NASH) is the progressive form of NAFLD. The Pathology Committee of the NASH Clinical Research Network designed and validated a histological feature scoring system that addresses the full spectrum of lesions of NAFLD and proposed a NAFLD activity score (NAS) for use in clinical trials. The scoring system comprised 14 histological features, 4 of which were evaluated semi-quantitatively: steatosis (0-3), lobular inflammation (0-2), hepatocellular ballooning (0-2), and fibrosis (0-4). Another nine features were recorded as present or absent. An anonymized study set of 50 cases (32 from adult hepatology services, 18 from pediatric hepatology services) was assembled, coded, and circulated. For the validation study, agreement on scoring and a diagnostic categorization ("NASH," "borderline," or "not NASH") were evaluated by using weighted kappa statistics. Inter-rater agreement on adult cases was: 0.84 for fibrosis, 0.79 for steatosis, 0.56 for injury, and 0.45 for lobular inflammation. Agreement on diagnostic category was 0.61. Using multiple logistic regression, five features were independently associated with the diagnosis of NASH in adult biopsies: steatosis (P = .009), hepatocellular ballooning (P = .0001), lobular inflammation (P = .0001), fibrosis (P = .0001), and the absence of lipogranulomas (P = .001). The proposed NAS is the unweighted sum of steatosis, lobular inflammation, and hepatocellular ballooning scores. In conclusion, we present a strong scoring system and NAS for NAFLD and NASH with reasonable inter-rater reproducibility that should be useful for studies of both adults and children with any degree of NAFLD. NAS of > or =5 correlated with a diagnosis of NASH, and biopsies with scores of less than 3 were diagnosed as "not NASH."
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of Insulin Action and Insulin Resistance

            The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease

              Elucidation of the genetic factors underlying chronic liver disease may reveal new therapeutic targets.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Gastroenterology
                Gastroenterology
                Elsevier BV
                00165085
                August 2020
                August 2020
                : 159
                : 2
                : 534-548.e11
                Article
                10.1053/j.gastro.2020.04.058
                32376409
                765a5f29-3f45-4dce-a175-2817e4d1b167
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article