18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transglutaminase 2 regulates osteoclast differentiation via a Blimp1-dependent pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transglutaminase 2 (TG2) performs multiple reactions, including transamidation, and also plays a role in signal transduction as a GTP-binding protein. In this study, we reveal that TG2 controls osteoclast differentiation and bone homeostasis in mice. Osteoclasts specifically expressed the TG2 isoform among eight TG family members. Suppression in TG2 expression with siRNA led to increased osteoclast formation from primary mouse precursor cells in response to receptor activator of nuclear factor kappaB ligand (RANKL). This osteoclastogenic effect of TG2 knockdown was associated with enhanced induction of c-Fos and NFATc1 by RANKL. Moreover, TG2 knockdown up-regulated B lymphocyte-induced maturation protein 1 (Blimp1), which represses anti-osteoclastogenic genes, in a manner dependent on the NF-κB signaling pathway. To the contrary, TG2 overexpression inhibited osteoclast formation and the expression of osteoclastogenic genes. Consistent with these in vitro results, TG2 knockout mice exhibited lower trabecular bone mass and increased number of osteoclasts compared with wild-type mice. Taken together, our results provide strong evidence that TG2 plays an important role in bone metabolism by suppressing excessive osteoclastogenesis via the regulation of the NF-κB-Blimp1 signaling pathway.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Transglutaminases: crosslinking enzymes with pleiotropic functions.

          Blood coagulation, skin-barrier formation, hardening of the fertilization envelope, extracellular-matrix assembly and other important biological processes are dependent on the rapid generation of covalent crosslinks between proteins. These reactions--which are catalysed by transglutaminases--endow the resulting supramolecular structure with extra rigidity and resistance against proteolytic degradation. Some transglutaminases function as molecular switches in cytoskeletal scaffolding and modulate protein-protein interactions. Having knowledge of these enzymes is essential for understanding the aetiologies of diverse hereditary diseases of the blood and skin, and various autoimmune, inflammatory and degenerative conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Regulation of NFATc1 in Osteoclast Differentiation

            Osteoclasts are unique cells that degrade the bone matrix. These large multinucleated cells differentiate from the monocyte/macrophage lineage upon stimulation by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL). Activation of transcription factors such as microphthalmia transcription factor (MITF), c-Fos, NF-κB, and nuclear factor-activated T cells c1 (NFATc1) is required for sufficient osteoclast differentiation. In particular, NFATc1 plays the role of a master transcription regulator of osteoclast differentiation. To date, several mechanisms, including transcription, methylation, ubiquitination, acetylation, and non-coding RNAs, have been shown to regulate expression and activation of NFATc1. In this review, we have summarized the various mechanisms that control NFATc1 regulation during osteoclast differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fos/AP-1 proteins in bone and the immune system.

              The skeleton and the immune system share a variety of different cytokines and transcription factors, thereby mutually influencing each other. These interactions are not confined to the bone marrow cavity where bone cells and hematopoietic cells exist in proximity but also occur at locations that are target sites for inflammatory bone diseases. The newly established research area termed 'osteoimmunology' attempts to unravel these skeletal/immunological relationships. Studies towards a molecular understanding of inflammatory bone diseases from an immunological as well as a bone-centered perspective have been very successful and led to the identification of several signaling pathways that are causally involved in inflammatory bone loss. Induction of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) signals by activated T cells and subsequent activation of the key transcription factors Fos/activator protein-1 (AP-1), NF-kappaB, and NF for activation of T cells c1 (NFATc1) are in the center of the signaling networks leading to osteoclast-mediated bone loss. Conversely, nature has employed the interferon system to antagonize excessive osteoclast differentiation, although this counteracting activity appears to be overruled under pathological conditions. Here, we focus on Fos/AP-1 functions in osteoimmunology, because this osteoclastogenic transcription factor plays a central role in inflammatory bone loss by regulating genes like NFATc1 as well as the interferon system. We also attempt to put potential therapeutic strategies for inflammatory bone diseases in perspective.
                Bookmark

                Author and article information

                Contributors
                hhbkim@snu.ac.kr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                6 September 2017
                6 September 2017
                2017
                : 7
                : 10626
                Affiliations
                [1 ]ISNI 0000 0004 0470 5905, GRID grid.31501.36, Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute, Seoul National University, ; Seoul, 03080 Korea
                [2 ]ISNI 0000 0004 0470 5905, GRID grid.31501.36, Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, ; Seoul, 110-799 Korea
                [3 ]Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612 Korea
                Article
                11246
                10.1038/s41598-017-11246-5
                5587636
                28878266
                767a3f23-f275-40ee-8a47-b2a5d08e81b7
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 February 2017
                : 18 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article