8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Glycation Stress and Photo-Aging in Skin

      , , ,
      ANTI-AGING MEDICINE
      Japanese Society of Anti-Aging Medicine

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking.

          Age-associated increases in collagen cross-linking and accumulation of advanced glycosylation products are both accelerated by diabetes, suggesting that glucose-derived cross-link formation may contribute to the development of chronic diabetic complications as well as certain physical changes of aging. Aminoguanidine, a nucleophilic hydrazine compound, prevented both the formation of fluorescent advanced nonenzymatic glycosylation products and the formation of glucose-derived collagen cross-links in vitro. Aminoguanidine administration to rats was equally effective in preventing diabetes-induced formation of fluorescent advanced nonenzymatic glycosylation products and cross-linking of arterial wall connective tissue protein in vivo. The identification of aminoguanidine as an inhibitor of advanced nonenzymatic glycosylation product formation now makes possible precise experimental definition of the pathogenetic significance of this process and suggests a potential clinical role for aminoguanidine in the future treatment of chronic diabetic complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients.

            Tissue advanced glycation end products (AGE) are a measure of cumulative metabolic stress and trigger cytokines driven inflammatory reactions. AGE are thought to contribute to the chronic complications of diabetes and ESRD. Tissue autofluorescence is related to the accumulation of AGE. Therefore, skin autofluorescence (AF) may provide prognostic information on mortality in hemodialysis (HD) patients. Skin AF was measured noninvasively with an AF reader at baseline in 109 HD patients. Overall and cardiovascular mortality was monitored prospectively during a period of 3 yr. The AF reader was validated against AGE contents in skin biopsies from 29 dialysis patients. Forty-two of the 109 (38.5%) HD patients died. Cox regression analysis showed that AF was an independent predictor of overall and cardiovascular mortality (for overall mortality odds ratio [OR] 3.9), as were pre-existing cardiovascular disease (CVD; OR 3.1), C-reactive protein (OR 1.1), and serum albumin (OR 0.3). Multivariate analysis revealed that 65% of the variance in AF could be attributed to the independent effects of age, dialysis and renal failure duration, presence of diabetes, triglycerides levels, and C-reactive protein. AF was also independently linked to the presence of CVD at baseline (OR 8.8; P < 0.001). AF correlated with collagen-linked fluorescence (r = 0.71, P < 0.001), pentosidine (r = 0.75, P < 0.001), and carboxy(m)ethyllysine (both r = 0.45, P < 0.01). Skin AF is a strong and independent predictor of mortality in ESRD. This supports a role for AGE as a contributor to mortality and CVD and warrants interventions specifically aimed at AGE accumulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accumulation of Maillard reaction products in skin collagen in diabetes and aging.

              To investigate the contribution of glycation and oxidation reactions to the modification of insoluble collagen in aging and diabetes, Maillard reaction products were measured in skin collagen from 39 type 1 diabetic patients and 52 nondiabetic control subjects. Compounds studied included fructoselysine (FL), the initial glycation product, and the glycoxidation products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine, formed during later Maillard reactions. Collagen-linked fluorescence was also studied. In nondiabetic subjects, glycation of collagen (FL content) increased only 33% between 20 and 85 yr of age. In contrast, CML, pentosidine and fluorescence increased five-fold, correlating strongly with age. In diabetic patients, collagen FL was increased threefold compared with nondiabetic subjects, correlating strongly with glycated hemoglobin but not with age. Collagen CML, pentosidine and fluorescence were increased up to twofold in diabetic compared with control patients: this could be explained by the increase in glycation alone, without invoking increased oxidative stress. There were strong correlations among CML, pentosidine and fluorescence in both groups, providing evidence for age-dependent chemical modification of collagen via the Maillard reaction, and acceleration of this process in diabetes. These results support the description of diabetes as a disease characterized by accelerated chemical aging of long-lived tissue proteins.
                Bookmark

                Author and article information

                Journal
                ANTI-AGING MEDICINE
                Anti-Aging Med
                Japanese Society of Anti-Aging Medicine
                1882-2762
                2011
                2011
                : 8
                : 3
                : 23-29
                Article
                10.3793/jaam.8.23
                76839da6-b741-4596-99ab-8a9134043c65
                © 2011
                History

                Comments

                Comment on this article