1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Various Feed Additives on Finishing Pig Growth Performance and Carcass Characteristics: A Review

      , , , , ,
      Animals
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Feed additives have shown benefits throughout the literature in improving grow–finish pigs’ growth performance and carcass characteristics. However, the results have not been well summarized. Therefore, this review summarizes the available research (402 articles) on 14 feed additive categories fed to grow–finish pigs. The categories were acidifiers, betaine, Cr, conjugated linoleic acids, Cu, direct-fed microbials, carbohydrases, proteases, phytases, multi-enzymes, essential oils, L-carnitine, yeasts, and Zn. Qualified articles were collected and selected based on inclusion and exclusion criteria from online databases. The percentage difference for each response variable between the treatment and control group was calculated and summarized. Most results were positive for each feed additive; however, the magnitude of improvement varied, and most were not statistically significant. For ADG, DFM, Cu, L-carnitine, and multi-enzymes showed relatively large positive effects (>2.1% improvement) across a reasonable number of articles. Acidifiers, betaine, CLA, multi-enzymes, DFM, L-carnitine, and yeasts showed relatively large positive effects (>2.5% improvement) on improving G:F. Moreover, except for betaine, Cr, CLA, and L-carnitine, most feed additives showed little and non-significant effects on BF thickness (<1.7% improvement). This review provides a descriptive analysis for commonly used feed additives in the hope of better understanding feed additives’ effects on grow–finish pigs.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Essential oils: their antibacterial properties and potential applications in foods--a review.

          In vitro studies have demonstrated antibacterial activity of essential oils (EOs) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli O157:H7, Shigella dysenteria, Bacillus cereus and Staphylococcus aureus at levels between 0.2 and 10 microl ml(-1). Gram-negative organisms are slightly less susceptible than gram-positive bacteria. A number of EO components has been identified as effective antibacterials, e.g. carvacrol, thymol, eugenol, perillaldehyde, cinnamaldehyde and cinnamic acid, having minimum inhibitory concentrations (MICs) of 0.05-5 microl ml(-1) in vitro. A higher concentration is needed to achieve the same effect in foods. Studies with fresh meat, meat products, fish, milk, dairy products, vegetables, fruit and cooked rice have shown that the concentration needed to achieve a significant antibacterial effect is around 0.5-20 microl g(-1) in foods and about 0.1-10 microl ml(-1) in solutions for washing fruit and vegetables. EOs comprise a large number of components and it is likely that their mode of action involves several targets in the bacterial cell. The hydrophobicity of EOs enables them to partition in the lipids of the cell membrane and mitochondria, rendering them permeable and leading to leakage of cell contents. Physical conditions that improve the action of EOs are low pH, low temperature and low oxygen levels. Synergism has been observed between carvacrol and its precursor p-cymene and between cinnamaldehyde and eugenol. Synergy between EO components and mild preservation methods has also been observed. Some EO components are legally registered flavourings in the EU and the USA. Undesirable organoleptic effects can be limited by careful selection of EOs according to the type of food.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors

            This review focuses on phytase functionality in the digestive tract of farmed non-ruminant animals and the factors influencing in vivo phytase enzyme activity. In pigs, feed phytase is mainly active in the stomach and upper part of the small intestine, and added phytase activity is not recovered in the ileum. In poultry, feed phytase activities are mainly found in the upper part of the digestive tract, including the crop, proventriculus and gizzard. For fish with a stomach, phytase activities are mainly in the stomach. Many factors can influence the efficiency of feed phytase in the gastrointestinal tract, and they can be divided into three main groups: (i) phytase related; (ii) dietary related and (iii) animal related. Phytase-related factors include type of phytase (e.g. 3- or 6-phytase; bacterial or fungal phytase origin), the pH optimum and the resistance of phytase to endogenous protease. Dietary-related factors are mainly associated with dietary phytate content, feed ingredient composition and feed processing, and total P, Ca and Na content. Animal-related factors include species, gender and age of animals. To eliminate the antinutritional effects of phytate (IP6), it needs to be hydrolyzed as quickly as possible by phytase in the upper part of the digestive tract. A phytase that works over a wide range of pH values and is active in the stomach and upper intestine (along with several other characteristics and in addition to being refractory to endogenous enzymes) would be ideal. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets.

              Dietary doses of 2,500 ppm ZnO-Zn reduced bacterial activity (ATP accumulation) in digesta from the gastrointestinal tracts of newly weaned piglets compared to that in animals receiving 100 ppm ZnO-Zn. The amounts of lactic acid bacteria (MRS counts) and lactobacilli (Rogosa counts) were reduced, whereas coliforms (MacConkey counts) and enterococci (Slanetz counts, red colonies) were more numerous in animals receiving the high ZnO dose. Based on 16S rRNA gene sequencing, the colonies on MRS were dominated by three phylotypes, tentatively identified as Lactobacillus amylovorus (OTU171), Lactobacillus reuteri (OTU173), and Streptococcus alactolyticus (OTU180). The colonies on Rogosa plates were dominated by the two Lactobacillus phylotypes only. Terminal restriction fragment length polymorphism analysis supported the observations of three phylotypes of lactic acid bacteria dominating in piglets receiving the low ZnO dose and of coliforms and enterococci dominating in piglets receiving the high ZnO dose. Dietary doses of 175 ppm CuSO(4)-Cu also reduced MRS and Rogosa counts of stomach contents, but for these animals, the numbers of coliforms were reduced in the cecum and the colon. The influence of ZnO on the gastrointestinal microbiota resembles the working mechanism suggested for some growth-promoting antibiotics, namely, the suppression of gram-positive commensals rather than potentially pathogenic gram-negative organisms. Reduced fermentation of digestible nutrients in the proximal part of the gastrointestinal tract may render more energy available for the host animal and contribute to the growth-promoting effect of high dietary ZnO doses. Dietary CuSO(4) inhibited the coliforms and thus potential pathogens as well, but overall the observed effect of CuSO(4) was limited compared to that of ZnO.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Animals
                Animals
                MDPI AG
                2076-2615
                January 2023
                January 05 2023
                : 13
                : 2
                : 200
                Article
                10.3390/ani13020200
                36670740
                76aa6dfa-c0e5-4524-81ea-5df2259997a5
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article