7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rv2346c enhances mycobacterial survival within macrophages by inhibiting TNF-α and IL-6 production via the p38/miRNA/NF-κB pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The intracellular survival of Mycobacterium tuberculosis ( Mtb) has a central role in the pathogenesis of tuberculosis. Mtb Rv2346c is a member of 6-kDa early secreted antigenic target family of proteins, which are known to inhibit the host immune responses to promote bacillary persistence in macrophages. However, the mechanism through which Rv2346c participates in Mtb pathogenesis is unclear. In the present study, recombinant Rv2346c protein was synthesized and used to treat Bacillus Calmette–Guérin (BCG)-infected macrophages. The results showed that Rv2346c inhibited the proliferation of BCG-infected macrophages and enhanced the survival of BCG in macrophages. Tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were upregulated during BCG infection but downregulated by Rv2346c. Additional experiments showed that nuclear transcription factor-κB (NF-κB) in BCG-infected macrophages induced the production of TNF-α and IL-6. In addition, miR-155 and miR-99b had a suppressive effect on NF-κB, and the expression of these miRNAs was promoted by p38. Furthermore, Rv2346c was shown to decrease the activation of NF-κB, whereas it enhanced the phosphorylation of p38 and the expression of miR-155 and miR-99b. The function of Rv2346c was also verified in Mtb-infected mice. The results showed that Rv2346c increased the observed bacterial load and lung injury and downregulated TNF-α and IL-6 in vivo. Overall, our results reveal that Rv2346c enhances mycobacterial survival in macrophages via inhibiting the production of TNF-α and IL-6 in a p38/miRNA/NF-κB pathway-dependent manner, suggesting that Rv2346c acts as a crucial virulence factor in Mtb infection and has potential use as a target for anti-tuberculosis therapy.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis.

          The live attenuated bacillus Calmette-Guérin (BCG) vaccine for the prevention of disease associated with Mycobacterium tuberculosis was derived from the closely related virulent tubercle bacillus, Mycobacterium bovis. Although the BCG vaccine has been one of the most widely used vaccines in the world for over 40 years, the genetic basis of BCG's attenuation has never been elucidated. We employed subtractive genomic hybridization to identify genetic differences between virulent M. bovis and M. tuberculosis and avirulent BCG. Three distinct genomic regions of difference (designated RD1 to RD3) were found to be deleted from BCG, and the precise junctions and DNA sequence of each deletion were determined. RD3, a 9.3-kb genomic segment present in virulent laboratory strains of M. bovis and M. tuberculosis, was absent from BCG and 84% of virulent clinical isolates. RD2, a 10.7-kb DNA segment containing a novel repetitive element and the previously identified mpt-64 gene, was conserved in all virulent laboratory and clinical tubercle bacilli tested and was deleted only from substrains derived from the original BCG Pasteur strain after 1925. Thus, the RD2 deletion occurred after the original derivation of BCG. RD1, a 9.5-kb DNA segment found to be deleted from all BCG substrains, was conserved in all virulent laboratory and clinical isolates of M. bovis and M. tuberculosis tested. The reintroduction of RD1 into BCG repressed the expression of at least 10 proteins and resulted in a protein expression profile almost identical to that of virulent M. bovis and M. tuberculosis, as determined by two-dimensional gel electrophoresis. These data indicate a role for RD1 in the regulation of multiple genetic loci, suggesting that the loss of virulence by BCG is due to a regulatory mutation. These findings may be applicable to the rational design of a new attenuated tuberculosis vaccine and the development of new diagnostic tests to distinguish BCG vaccination from tuberculosis infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response.

            Fifty million new infections with Mycobacterium tuberculosis occur annually, claiming 2-3 million lives from tuberculosis worldwide. Despite the apparent lack of significant genetic heterogeneity between strains of M. tuberculosis, there is mounting evidence that considerable heterogeneity exists in molecules important in disease pathogenesis. These differences may manifest in the ability of some isolates to modify the host cellular immune response, thereby contributing to the observed diversity of clinical outcomes. Here we describe the identification and functional relevance of a highly biologically active lipid species-a polyketide synthase-derived phenolic glycolipid (PGL) produced by a subset of M. tuberculosis isolates belonging to the W-Beijing family that show 'hyperlethality' in murine disease models. Disruption of PGL synthesis results in loss of this hypervirulent phenotype without significantly affecting bacterial load during disease. Loss of PGL was found to correlate with an increase in the release of the pro-inflammatory cytokines tumour-necrosis factor-alpha and interleukins 6 and 12 in vitro. Furthermore, the overproduction of PGL by M. tuberculosis or the addition of purified PGL to monocyte-derived macrophages was found to inhibit the release of these pro-inflammatory mediators in a dose-dependent manner.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              microRNAs and the immune response

              Although the immune response is predominantly controlled at the transcriptional level, microRNA-mediated RNA interference is emerging as an important regulatory mechanism that operates at the translation level. Specifically, recent studies indicate that those miRNAs that are selectively and/or highly expressed in immune cells including the miR-17–92 cluster, miR-150, miR-155, miR-181 and miR-223 have a ‘permissive’ function in the maturation, proliferation and differentiation of myeloid and lymphoid cells. Importantly, these actions of miRNAs often involve interactions with transcription factors. In contrast, the rapid and transient induction of miR-9, miR-146a and miR-155 has been speculated to negatively regulate the acute responses following activation of innate immune through down-regulation of proteins involved in the receptor-induced signalling pathways.
                Bookmark

                Author and article information

                Contributors
                +025-58509837 , zhu1635253@163.com
                Journal
                Emerg Microbes Infect
                Emerg Microbes Infect
                Emerging Microbes & Infections
                Nature Publishing Group UK (London )
                2222-1751
                19 September 2018
                19 September 2018
                2018
                : 7
                : 158
                Affiliations
                [1 ]GRID grid.452511.6, Department of Respiratory Medicine, , the Second Affiliated Hospital of Nanjing Medical University, ; Nanjing, Jiangsu 210011 China
                [2 ]GRID grid.452511.6, Department of Infectious Diseases, , the Second Affiliated Hospital of Nanjing Medical University, ; Nanjing, Jiangsu 210011 China
                [3 ]ISNI 0000 0000 8803 2373, GRID grid.198530.6, Jiangsu Provincial Center for Disease Control and Prevention, ; Nanjing, Jiangsu 210009 China
                [4 ]GRID grid.452273.5, Department of Respiratory Medicine, , the First People’s Hospital of Kunshan, ; Kunshan, Jiangsu 215300 China
                [5 ]Department of Respiratory Medicine, Sir Run Run Hospital, Nanjing, Jiangsu 211100 China
                Article
                162
                10.1038/s41426-018-0162-6
                6145905
                30232332
                76d337f4-c2ef-44c2-9bac-2ba9652b762c
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 April 2018
                : 15 August 2018
                : 20 August 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81470209
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Comments

                Comment on this article