5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complex System of Vertical Baduanjin Lifting Motion Sensing Recognition under the Background of Big Data

      1 , 2 , 3

      Complexity

      Hindawi Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nowadays, the development of big data is getting faster and faster, and the related research on motion sensing recognition and complex systems under the background of big data is gradually being valued. At present, there are relatively few related researches on vertical Baduanjin in the academic circles; research in this direction can make further breakthroughs in motion sensor recognition. In order to carry out related action recognition research on the lifting action of vertical Baduanjin, this paper uses sensor technology to collect the motion video image of vertical Baduanjin based on the background of big data and uses action recognition technology and related algorithms to obtain the action. Recognize the video image to obtain the data, get the acceleration, angular velocity, and EMG data, and count the end time and duration according to the change of the action. According to the data table and graph change trend compiled at the end of the experiment, we can see the following: after the data is preprocessed, the acceleration signal change range is limited to [−1, 1], and the acceleration change has a clear directionality; and, after 15 lifts of the detected object, its angular velocity in X-axis direction is basically negative. However, when the ninth lift is performed, the angular velocity of the movement in X-axis direction is 36.09, the largest of all angular velocities. When performing the 15th lifting action, the angular velocity of this action in Z-axis direction is −26.05, which is the smallest of all angular velocities. The longest duration of the left muscle discharge during the lifting action of the subject is 15.24 for the tibial anterior muscle and 8.91 for the external oblique muscle with the shortest duration. The longest discharge duration of the right muscle is also the tibial anterior muscle with 12.15, and the shortest duration is the erector spinae with 8.79.

          Related collections

          Most cited references 9

          • Record: found
          • Abstract: not found
          • Article: not found

          A formal definition of Big Data based on its essential features

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Multidimensional approach to complex system resilience analysis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Introduction to the Special Issue on “State-of-the-Art Sensor Technology in Japan 2012”

              Since the previous special issue: State-of-the-Art Sensor Technology in Japan in 2008, which collected papers on sensing technology for monitoring of humans and the environment, we have experienced the Great East Japan Earthquake, Tsunami on 11 March 2011. This special issue, while aiming in the same direction, focuses on technologies for: (1) accuracy and sensitivity, (2) wireless functions, (3) real-time response, (4) portability (miniaturization), and (5) privacy preservation to promote sensor and sensing technologies for disaster prevention and resilient systems. Sensing Technologies: Yet another Perspective for Japan In the previous special issue: State-of-the-Art Sensor Technology in Japan in 2008 [1], we focused on the perspectives that Japan faces: both human issues and environmental issues. Human issues originated from Japan's demographics, which are rapidly changing as the population ages. Environmental issues originated from Japan's international leadership focused on the global warming problem. However, after the Great East Japan Earthquake, Tsunami on 11 March 2011, and the Fukushima Daiichi nuclear plant accident, we realized the need to cover human-environment symbiotic issues. One human-environment symbiotic issue is how to construct systems and societies that are resilient against natural and man-made disasters, while keeping constant efforts to maintain the natural environment. Resilient technologies including resilient sensing against disasters would be the responsibility of engineers and scientists. Sensors can gather data to detect disasters; recognize situations damaged by the disasters; and support decision-making for prompt responses to lessen the damage. Sensing technologies in Japan play a role in increasing resilience of sensors. The resilient sensors in turn help create and enhance resilient systems and community. We believe we can build a global sensor network with sensor systems installed at the gateway of the network for making the critical system resilient against disasters. For resilient sensing, sensors are required to detect dynamic and rapid changes in addition to static ones, microscopic changes as well as macroscopic ones, and private events and public ones. This special issue recognizes advancements of technologies for: (1) accuracy and sensitivity, (2) wireless functions, (3) real-time response (4) portability (miniaturization), and (5) privacy preservation depending on objects and environments for sensing. The present issue introduces state-of-the-art sensor technologies focusing on these five topics in Japan and finally proposes a ‘resilient’ technology. State-of-the-Art Regarding the topics of accuracy and sensitivity, Ai [2] deals with a flight control mechanism of the silk moth, which has unique machinery for sensing dynamic changes in the natural environment. The paper taught us that the silk moth has developed a highly sensitive biosensor to detect its own wingbeats which are used as feedback information to accurately control its action during flight. Goto et al. [3], also dealing with a biosensor, investigated the potential of a peptide nucleic acid (PNA) probe instead of a commonly used DNA one for sensitively detecting single stranded DNA with its complementary sequence. They noted the lack of negative charges in the PNA backbone enhances the detection sensitivity of the PNA prove, although they impose a target for detection on the condition of its length is relatively short. Etoh et al. [4] review the history of technical progress in the field of in situ storage image sensors. They anticipated the frame rate of their proposing hexagonal CCD-type multi-collection gate (MCG) backside illumination (BSI) sensor will exceed one gigaframe per second in the near feature. When the technology is established, never-seen-before scenes would be unveiled for us. Zhou et al. [5] focuses on secure sensing technologies. Nowadays the number of digital equipment mounting fingerprint authentication methods instead of password is increasing, and the accuracy enhancement of fingerprint identification is strongly desired. To enhance the performance of standard fingerprint authentication algorithms based on SIFT descriptors, they proposed SIFT-based minutia descriptors (SMD) and succeeded in fingerprint identification with high accuracy. Shi et al. [6] deal with sensor technologies for local identification. To accurately identify the localization of a moving object, they propose a framework of SLAM with Bundle Adjustment utilizing GPS data. In the experimental test on a campus grounds using a vehicle equipped with the proposed method, they succeeded in identifying the location of the moving vehicle with an accuracy of several centimeters. As for the wireless sensing, to synchronize multiple cameras without wiring them, Hou et al. [7] proposed a Manchester encoded illumination signal, whereby they open a new door for unwired vision sensor networks. Kan et al. [8] applied temperature-sensitive fluorescent dyes for a temperature sensor, enabling wireless temperature measurement in micro-regions. Fukuta et al. [9] developed a Laplacian electrode module to increase the sensitivity to electromyogram signal beneath the measurement site than conventional electrode modules. The newly developed electrode module has not only enhanced sensitivity but also wireless capability and portability thus extending applicability. Regarding the field of real time sensing, Watanabe et al. [10] used 80-MHz repetition-rate femtosecond laser pulses and succeeded in analyzing terahertz time-domain polarization in real time. This technology will allow us to investigate low-energy dynamical phenomena in various materials in real time. Fujioka et al. [11] used an FF-2A electronic noise to realize a real time detection of the change of volatile patterns produced by Aeromonas hydrophila. Thus far, conventional detection methods for Aeromonas hydrophila, which induces a food contaminant, failed to detect the bacteria before the indication of the disease. This simple and real-time detection method is expected to help preventing food poisoning. As for the topic of portable sensing, Tahara et al. [12] tackled taste sensors. Conventional taste sensing instruments were very heavy and thus not applicable for field use. In order to use it onsite, they developed a portable taste sensor device with a lipid/polimer membrane with a size comparable with a USB memory stick. Shimizu et al. [13] introduced a portable chemical decomposition system to improve indoor air quality (IAQ). They developed a portable microplasma reactor system to decompose formaldehyde indoors. To achieve its portability for the purpose of the use in a room environment, each microplasma electrode was devised to be on the order of micrometers in size. As for the sensing private events, Tao et al. [14], aiming at privacy-preserved sensing in the home environment, developed an infrared ceiling sensor network system. The system encodes the existence/non-existence of a person as a binary value, so it can detect a person preserving his/her privacy. This system is expected to watch abnormalities of elders who live alone, while ensuring their privacy. Next Generation Sensors We noted the bilateral character of sensor technology in the context of resilient technology. That is, sensor technology can enhance the resilience of the target system where sensors are installed; and sensors themselves must be resilient. To promote this direction, one possible avenue is sensor systems [1,15]. Sensor systems integrate many similar sensors like eyes, but also accommodate many distinct sensors like noses. Sensor systems can enhance the resilience of systems not only by locating and disconnecting faulty sensors but also by creating virtual sensors. They are not merely a collection of sensors; but are higher level sensing creations involving in situ information processing, just as multi-cellular organisms evolutionarily developed higher level sensing from simple reflective sensing.
                Bookmark

                Author and article information

                Contributors
                Journal
                Complexity
                Complexity
                Hindawi Limited
                1099-0526
                1076-2787
                February 9 2021
                February 9 2021
                : 2021
                : 1-10
                Affiliations
                [1 ]Sports Teaching and Research Office, Suzhou Institute of Trade and Commerce, Suzhou 215009, Jiangsu, China
                [2 ]Department of Computer and Information Science, Jouf University, Sakaka 72311, Al-Jouf, Saudi Arabia
                [3 ]Department of Basic Courses, Wuhan Donghu University, Wuhan 430212, Hubei, China
                Article
                10.1155/2021/6690606
                © 2021

                Comments

                Comment on this article