7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Attenuation of exercise effect on inflammatory responses via novel role of TLR4/PI3K/Akt signaling in rat splenocytes

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3.

          The cellular mechanisms that directly regulate the inflammatory response after Toll-like receptor (TLR) stimulation are unresolved at present. Here we report that glycogen synthase kinase 3 (GSK3) differentially regulates TLR-mediated production of pro- and anti-inflammatory cytokines. Stimulation of monocytes or peripheral blood mononuclear cells with TLR2, TLR4, TLR5 or TLR9 agonists induced substantial increases in interleukin 10 production while suppressing the release of proinflammatory cytokines after GSK3 inhibition. GSK3 regulated the inflammatory response by differentially affecting the nuclear amounts of transcription factors NF-kappaB subunit p65 and CREB interacting with the coactivator CBP. Administration of a GSK3 inhibitor potently suppressed the proinflammatory response in mice receiving lipopolysaccharide and mediated protection from endotoxin shock. These findings demonstrate a regulatory function for GSK3 in modulating the inflammatory response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells.

            Monocytes and macrophages express cytokines and procoagulant molecules in various inflammatory diseases. In sepsis, lipopolysaccharide (LPS) from Gram-negative bacteria induces tumor necrosis factor-alpha (TNF-alpha) and tissue factor (TF) in monocytic cells via the activation of the transcription factors Egr-1, AP-1, and nuclear factor-kappa B. However, the signaling pathways that negatively regulate LPS-induced TNF-alpha and TF expression in monocytic cells are currently unknown. We report that inhibition of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway enhances LPS-induced activation of the mitogen-activated protein kinase pathways (ERK1/2, p38, and JNK) and the downstream targets AP-1 and Egr-1. In addition, inhibition of PI3K-Akt enhanced LPS-induced nuclear translocation of nuclear factor-kappa B and prevented Akt-dependent inactivation of glycogen synthase kinase-beta, which increased the transactivational activity of p65. We propose that the activation of the PI3K-Akt pathway in human monocytes limits the LPS induction of TNF-alpha and TF expression. Our study provides new insight into the inhibitory mechanism by which the PI3K-Akt pathway ensures transient expression of these potent inflammatory mediators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PI3K and negative regulation of TLR signaling.

              Excessive immune responses are detrimental to the host and negative feedback regulation is crucial for the maintenance of immune-system integrity. Recent studies have shown that phosphoinositide 3-kinase (PI3K) is an endogenous suppressor of interleukin-12 (IL-12) production triggered by Toll-like receptor (TLR) signaling and limits excessive Th1 polarization. Unlike IRAK-M (IL-1 receptor-associated kinase-M) and SOCS-1 (suppressor of cytokine signaling-1) that are induced by TLR signaling and function during the second or continuous exposure to stimulation, PI3K functions at the early phase of TLR signaling and modulates the magnitude of the primary activation. Thus, PI3K, IRAK-M and SOCS-1 have unique roles in the gate-keeping system, preventing excessive innate immune responses.
                Bookmark

                Author and article information

                Journal
                Journal of Applied Physiology
                Journal of Applied Physiology
                American Physiological Society
                8750-7587
                1522-1601
                October 2016
                October 2016
                : 121
                : 4
                : 870-877
                Affiliations
                [1 ]Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan;
                [2 ]Medical Center of Aging Research, China Medical University Hospital, Taichung, Taiwan;
                [3 ]Department of Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan;
                [4 ]Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan;
                [5 ]Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan;
                [6 ]Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan;
                [7 ]Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; and
                [8 ]Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
                Article
                10.1152/japplphysiol.00393.2016
                780a4721-2e2d-4683-a1d8-f18ea6a6e09e
                © 2016
                History

                Comments

                Comment on this article