22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Motion area V5/MT+ response to global motion in the absence of V1 resembles early visual cortex

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Little is known about how non-V1 inputs influence motion area V5/MT+. Ajina et al. reveal that after V1 damage, V5/MT+ activity resembles that of early visual cortex, perhaps driven by similar subcortical inputs. While these inputs are normally overshadowed by V1 connections, acknowledging their contribution may improve neuronal models.

          Abstract

          Motion area V5/MT+ shows a variety of characteristic visual responses, often linked to perception, which are heavily influenced by its rich connectivity with the primary visual cortex (V1). This human motion area also receives a number of inputs from other visual regions, including direct subcortical connections and callosal connections with the contralateral hemisphere. Little is currently known about such alternative inputs to V5/MT+ and how they may drive and influence its activity. Using functional magnetic resonance imaging, the response of human V5/MT+ to increasing the proportion of coherent motion was measured in seven patients with unilateral V1 damage acquired during adulthood, and a group of healthy age-matched controls. When V1 was damaged, the typical V5/MT+ response to increasing coherence was lost. Rather, V5/MT+ in patients showed a negative trend with coherence that was similar to coherence-related activity in V1 of healthy control subjects. This shift to a response-pattern more typical of early visual cortex suggests that in the absence of V1, V5/MT+ activity may be shaped by similar direct subcortical input. This is likely to reflect intact residual pathways rather than a change in connectivity, and has important implications for blindsight function. It also confirms predictions that V1 is critically involved in normal V5/MT+ global motion processing, consistent with a convergent model of V1 input to V5/MT+. Historically, most attempts to model cortical visual responses do not consider the contribution of direct subcortical inputs that may bypass striate cortex, such as input to V5/MT+. We have shown that the signal change driven by these non-striate pathways can be measured, and suggest that models of the intact visual system may benefit from considering their contribution.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: not found
          • Article: not found

          The Psychophysics Toolbox

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast robust automated brain extraction.

            An automated method for segmenting magnetic resonance head images into brain and non-brain has been developed. It is very robust and accurate and has been tested on thousands of data sets from a wide variety of scanners and taken with a wide variety of MR sequences. The method, Brain Extraction Tool (BET), uses a deformable model that evolves to fit the brain's surface by the application of a set of locally adaptive model forces. The method is very fast and requires no preregistration or other pre-processing before being applied. We describe the new method and give examples of results and the results of extensive quantitative testing against "gold-standard" hand segmentations, and two other popular automated methods. Copyright 2002 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images

                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                brainj
                brain
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                January 2015
                29 November 2014
                29 November 2014
                : 138
                : 1
                : 164-178
                Affiliations
                1 FMRIB Centre, University of Oxford, UK
                2 Nuffield Department of Clinical Neurosciences, University of Oxford, UK
                3 Wellcome Trust Centre for Neuroimaging, University College London, UK
                4 Institute of Cognitive Neuroscience, University College London, UK
                Author notes
                Correspondence to: Dr Sara Ajina, FMRIB Centre, John Radcliffe Hospital, University of Oxford, Headington OX3 9DU, UK E-mail: sara.ajina@ 123456ndcn.ox.ac.uk
                Article
                awu328
                10.1093/brain/awu328
                4285193
                25433915
                781edcc9-f2ef-4b76-9b75-65dca649b85c
                © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 June 2014
                : 4 September 2014
                : 25 September 2014
                Page count
                Pages: 15
                Categories
                Original Articles

                Neurosciences
                hemianopia,visual cortex,motion coherence,subcortical,functional mri
                Neurosciences
                hemianopia, visual cortex, motion coherence, subcortical, functional mri

                Comments

                Comment on this article