3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Peripapillary Vessel Density In Unilateral Preperimetric Glaucoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To investigate vessel density (VD) of radial peripapillary capillaries (RPC) and structural alterations in patients with unilateral preperimetric glaucoma (PPG) using optical coherence tomography angiography (OCTA).

          Methods

          This cross-sectional observational study included 13 untreated patients with unilateral PPG. PPG eyes had larger excavation and abnormal thinning of retinal nerve fiber layer (RNFL) and/or ganglion cell complex (GCC) compared with fellow eyes (F). Both RNFL and GCC thickness in F were statistically within normal limits and/or borderline. The RPC VD on optic disc (idVD), of peripapillary (ppVD) and whole image (wiVD) scan area was measured. Twenty healthy eyes (H) served as controls. Structural and vascular parameters obtained by spectral-domain OCT/OCTA (Optovue; Fremont, CA) were compared between PPG, F and H.

          Results

          Mean RNFL and GCC average thickness in microns differed significantly (p<0.001) between PPG (82.4±7.1, 81.4±5.9), F (91.0±7.1, 88.5±3.8) and H (103.5±6.0, 99.3±5.7). PPG compared with F showed significantly (p<0.001) lower mean ppVD (43.8%±3.0% versus 47.8%±3.2%) and wiVD (45.9%±3.5% versus 50.1%±3.9%). Mean ppVD (49.7%±2.4%) and wiVD (52.6%±3.0%) in H were not significantly higher than in F. Mean idVD showed no significant differences among the 3 groups. Areas under the receiver operating characteristic curves (AUROCs) for RNFL, GCC, ppVD and wiVD between PPG and H were excellent (>0.9). AUROCs between F and H demonstrated an excellent diagnostic ability for structural parameters and a poor one (<0.7) for vascular parameters.

          Conclusion

          Affected eyes of patients with unilateral PPG demonstrated significant RPC dropout. Clinically unaffected eyes showed thinner structural parameters but no significant microvasculature differences compared with non-glaucomatous eyes. Diagnostic ability of peripapillary vascular parameters was not superior to structural measurements. Microvascular dysfunction seems to be an early but not a primary event in glaucoma continuum at the stage of undetectable visual field loss. OCTA can be useful in early glaucoma diagnosis.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Optical coherence tomography angiography of optic disc perfusion in glaucoma.

          To compare optic disc perfusion between normal subjects and subjects with glaucoma using optical coherence tomography (OCT) angiography and to detect optic disc perfusion changes in glaucoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.

            To compare the number of retinal ganglion cells (RGCs) topographically mapped with specific visual field threshold test data in the same eyes among glaucoma patients. Seventeen eyes of 13 persons with well-documented glaucoma histories and Humphrey threshold visual field tests (San Leandro, CA) were obtained from eye banks. RGC number was estimated by histologic counts of retinal sections and by counts of remaining axons in the optic nerves. The locations of the retinal samples corresponded to specific test points in the visual field. The data for glaucoma patients were compared with 17 eyes of 17 persons who were group matched for age, had no ocular history, and had normal eyes by histologic examination. The mean RGC loss for the entire retina averaged 10.2%, indicating that many eyes had early glaucoma damage. RGC body loss averaged 35.7% in eyes with corrected pattern SD probability less than 0.5%. When upper to lower retina RGC counts were compared with their corresponding visual field data within each eye, a 5-dB loss in sensitivity was associated with 25% RGC loss. For individual points that were abnormal at a probability less than 0.5%, the mean RGC loss was 29%. In control eyes, the loss of RGCs with age was estimated as 7205 cells per year in persons between 55 and 95 years of age. In optic nerves from glaucoma subjects, smaller axons were significantly more likely to be present than larger axons (R2 = 0.78, P<0.001). At least 25% to 35% RGC loss is associated with statistical abnormalities in automated visual field testing. In addition, these data corroborate previous findings that RGCs with larger diameter axons preferentially die in glaucoma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mapping the visual field to the optic disc in normal tension glaucoma eyes.

              To establish the anatomical relationship between visual field test points in the Humphrey 24-2 test pattern and regions of the optic nerve head (ONH) DESIGN: Cross-sectional study. Glaucoma patients and suspects from the Normal Tension Glaucoma Clinic at Moorfields Eye Hospital. Sixty-nine retinal nerve fiber layer (RNFL) photographs with well-defined RNFL defects and/or prominent bundles were digitized. An appropriately scaled Humphrey 24-2 visual field grid and an ONH reference circle, divided into 30 degrees sectors, were generated digitally. These were superimposed onto the RNFL images. The relationship of visual field test points to the circumference of the ONH was estimated by noting the proximity of test points to RNFL defects and/or prominent bundles. The position of the ONH in relation to the fovea was also noted. The sector at the ONH corresponding to each visual field test point, the position of the ONH in relation to the fovea, and the effect of the latter on the former. A median 22 (range, 4-58), of a possible 69, ONH positions were assigned to each visual field test point. The standard deviation of estimations was 7.2 degrees. The position of the ONH was 15.5 degrees (standard deviation 0.9 degrees ) nasal and 1.9 degrees (standard deviation 1.0 degrees ) above the fovea. The location of the ONH had a significant effect on the corresponding position at the ONH for 28 of 52 visual field test points. A clinically useful map that relates visual field test points to regions of the ONH has been produced. The map will aid clinical evaluation of glaucoma patients and suspects, as well as form the basis for investigations of the relationship between retinal light sensitivity and ONH structure.
                Bookmark

                Author and article information

                Journal
                Clin Ophthalmol
                Clin Ophthalmol
                OPTH
                clinop
                Clinical Ophthalmology (Auckland, N.Z.)
                Dove
                1177-5467
                1177-5483
                13 December 2019
                2019
                : 13
                : 2511-2519
                Affiliations
                [1 ]Eye Clinic, General Hospital ‘‘Red Cross’’ , Athens, Greece
                [2 ]1st University Eye Clinic, General Hospital “G. Gennimatas” , Athens, Greece
                Author notes
                Correspondence: G Mangouritsas Eye Clinic, General Hospital “Red Cross” , Athanasaki 2, Athens11526, GreeceTel +306942781166 Email maguritsas@gmail.com
                Author information
                http://orcid.org/0000-0001-7133-8357
                http://orcid.org/0000-0003-4268-268X
                http://orcid.org/0000-0001-7548-0449
                Article
                224757
                10.2147/OPTH.S224757
                6917599
                31997876
                782abc2e-76e4-4d0c-84fd-f235352f389b
                © 2019 Mangouritsas et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 25 July 2019
                : 18 October 2019
                Page count
                Figures: 1, Tables: 2, References: 54, Pages: 9
                Categories
                Original Research

                Ophthalmology & Optometry
                optical coherence tomography angiography,glaucoma,preperimetric glaucoma,vessel density,retinal nerve fiber layer,ganglion cell complex

                Comments

                Comment on this article