15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Keeping track of hidden dangers - The short history of the Sabiá virus

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Emerging infectious diseases are a global threat. In countries like Brazil, where biodiversity is high and public health conditions in terms of infrastructure and medical care are often precarious, emerging diseases are particularly worrisome. The lack of monitoring strategies to identify pathogens with the potential to cause outbreaks or epidemics is another problem in Brazil and other developing countries. In this article, we present the history of the Sabiá virus (SABV), a pathogen that was described in the 1990s in Brazil. Several aspects of the biology and ecology of the SABV remain unknown. The SABV has the potential to cause hemorrhagic fever in humans. To date, four cases of human infections have been reported worldwide; two were naturally acquired (both in Brazil), whereas the other two were linked to occupational exposure in the laboratory environment (one in Brazil and one in the USA). In this review, we summarize the basic biological and ecological characteristics of the SABV. This is the first work to gather all available data on the historical aspects involving the cases of SABV infection along with an update on its characteristic features.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses

          Viral receptor identified The transferrin receptor 1 (TfR1) has been identified as the cellular receptor for four New World arenaviruses — the Junin, Machupo, Guanarito and Sabia viruses. This class of arenaviruses is important because they cause fatal haemorrhagic fevers. Treating cultured cells with an antibody against TfR1 blocks viral entry and replication. Antibodies that limit arenavirus replication without interfering with host iron metabolism may be effective in controlling outbreaks of New World haemorrhagic fever. Supplementary information The online version of this article (doi:10.1038/nature05539) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Past, present, and future of arenavirus taxonomy.

            Until recently, members of the monogeneric family Arenaviridae (arenaviruses) have been known to infect only muroid rodents and, in one case, possibly phyllostomid bats. The paradigm of arenaviruses exclusively infecting small mammals shifted dramatically when several groups independently published the detection and isolation of a divergent group of arenaviruses in captive alethinophidian snakes. Preliminary phylogenetic analyses suggest that these reptilian arenaviruses constitute a sister clade to mammalian arenaviruses. Here, the members of the International Committee on Taxonomy of Viruses (ICTV) Arenaviridae Study Group, together with other experts, outline the taxonomic reorganization of the family Arenaviridae to accommodate reptilian arenaviruses and other recently discovered mammalian arenaviruses and to improve compliance with the Rules of the International Code of Virus Classification and Nomenclature (ICVCN). PAirwise Sequence Comparison (PASC) of arenavirus genomes and NP amino acid pairwise distances support the modification of the present classification. As a result, the current genus Arenavirus is replaced by two genera, Mammarenavirus and Reptarenavirus, which are established to accommodate mammalian and reptilian arenaviruses, respectively, in the same family. The current species landscape among mammalian arenaviruses is upheld, with two new species added for Lunk and Merino Walk viruses and minor corrections to the spelling of some names. The published snake arenaviruses are distributed among three new separate reptarenavirus species. Finally, a non-Latinized binomial species name scheme is adopted for all arenavirus species. In addition, the current virus abbreviations have been evaluated, and some changes are introduced to unequivocally identify each virus in electronic databases, manuscripts, and oral proceedings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a broad-spectrum arenavirus entry inhibitor.

              Several arenaviruses, including Lassa virus (LASV), are causative agents of hemorrhagic fever, for which effective therapeutic options are lacking. The LASV envelope glycoprotein (GP) gene was used to generate lentiviral pseudotypes to identify small-molecule inhibitors of viral entry. A benzimidazole derivative with potent antiviral activity was identified from a high-throughput screen utilizing this strategy. Subsequent lead optimization for antiviral activity identified a modified structure, ST-193, with a 50% inhibitory concentration (IC(50)) of 1.6 nM against LASV pseudotypes. ST-193 inhibited pseudotypes generated with other arenavirus envelopes as well, including the remaining four commonly associated with hemorrhagic fever (IC(50)s for Junín, Machupo, Guanarito, and Sabiá were in the 0.2 to 12 nM range) but exhibited no antiviral activity against pseudotypes incorporating either the GP from the LASV-related arenavirus lymphocytic choriomeningitis virus (LCMV) or the unrelated G protein from vesicular stomatitis virus, at concentrations of up to 10 microM. Determinants of ST-193 sensitivity were mapped through a combination of LASV-LCMV domain-swapping experiments, genetic selection of viral variants, and site-directed mutagenesis. Taken together, these studies demonstrate that sensitivity to ST-193 is dictated by a segment of about 30 amino acids within the GP2 subunit. This region includes the carboxy-terminal region of the ectodomain and the predicted transmembrane domain of the envelope protein, revealing a novel antiviral target within the arenavirus envelope GP.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Journal
                rsbmt
                Revista da Sociedade Brasileira de Medicina Tropical
                Rev. Soc. Bras. Med. Trop.
                Sociedade Brasileira de Medicina Tropical - SBMT (Uberaba, MG, Brazil )
                0037-8682
                1678-9849
                February 2017
                : 50
                : 1
                : 3-8
                Affiliations
                [1] Porto Alegre Rio Grande do Sul orgnameUniversidade Federal do Rio Grande do Sul orgdiv1Departamento de Genética orgdiv2Laboratório de Imunogenética Brazil
                Article
                S0037-86822017000100003
                10.1590/0037-8682-0330-2016
                28327796
                79803e23-377d-4f27-9df5-f23fe035f26f

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 18 October 2016
                : 07 February 2017
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 32, Pages: 6
                Product

                SciELO Brazil


                Arenaviridae,Emerging viral disease,Sabiá virus,Viral ecology

                Comments

                Comment on this article