14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inorganic halide perovskites such as cesium lead halide are promising due to their excellent thermal stability. Cesium lead iodide (CsPbI 3) has a bandgap of 1.73 eV and is very suitable for making efficient tandem solar cells, either with low-bandgap perovskite or silicon. However, the phase instability of CsPbI 3 is hindering the further optimization of device performance. Here, we show that high quality and stable α-phase CsPbI 3 film is obtained via solvent-controlled growth of the precursor film in a dry environment. A 15.7% power conversion efficiency of CsPbI 3 solar cells is achieved, which is the highest efficiency reported for inorganic perovskite solar cells up to now. And more importantly, the devices can tolerate continuous light soaking for more than 500 h without efficiency drop.

          Abstract

          Cesium lead iodide inorganic perovskite solar cells have great potential but the phase instability hinders their development. Here Wang et al. show a controlled drying process to make phase stable and highly efficient solar cells with power conversion efficiency of 15.7%.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics.

          We show nanoscale phase stabilization of CsPbI3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI3 (α-CsPbI3)-the variant with desirable band gap-is only stable at high temperatures. We describe the formation of α-CsPbI3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuit voltage of 1.23 volts and efficiency of 10.77%. These devices also function as light-emitting diodes with low turn-on voltage and tunable emission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers.

            The recent dramatic rise in power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) has triggered intense research worldwide. However, high PCE values have often been reached with poor stability at an illuminated area of typically less than 0.1 square centimeter. We used heavily doped inorganic charge extraction layers in planar PSCs to achieve very rapid carrier extraction, even with 10- to 20-nanometer-thick layers, avoiding pinholes and eliminating local structural defects over large areas. The robust inorganic nature of the layers allowed for the fabrication of PSCs with an aperture area >1 square centimeter that have a PCE >15%, as certified by an accredited photovoltaic calibration laboratory. Hysteresis in the current-voltage characteristics was eliminated; the PSCs were stable, with >90% of the initial PCE remaining after 1000 hours of light soaking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells.

              The remarkable performance of hybrid perovskite photovoltaics is attributed to their long carrier lifetimes and high photoluminescence (PL) efficiencies. High-quality films are associated with slower PL decays, and it has been claimed that grain boundaries have a negligible impact on performance. We used confocal fluorescence microscopy correlated with scanning electron microscopy to spatially resolve the PL decay dynamics from films of nonstoichiometric organic-inorganic perovskites, CH3NH3PbI3(Cl). The PL intensities and lifetimes varied between different grains in the same film, even for films that exhibited long bulk lifetimes. The grain boundaries were dimmer and exhibited faster nonradiative decay. Energy-dispersive x-ray spectroscopy showed a positive correlation between chlorine concentration and regions of brighter PL, whereas PL imaging revealed that chemical treatment with pyridine could activate previously dark grains. Copyright © 2015, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                jyou@semi.ac.cn
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                8 June 2018
                8 June 2018
                2018
                : 9
                : 2225
                Affiliations
                [1 ]ISNI 0000000119573309, GRID grid.9227.e, Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, , Chinese Academy of Sciences, ; Beijing, 100083 China
                [2 ]ISNI 0000 0004 1797 8419, GRID grid.410726.6, College of Materials Science and Opto-electronic Technology, , University of Chinese Academy of Sciences, ; Beijing, 100049 China
                Author information
                http://orcid.org/0000-0002-4651-9081
                Article
                4636
                10.1038/s41467-018-04636-4
                5993712
                29884815
                7a24d6e1-5b03-45ba-92b3-c446671344a7
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 February 2018
                : 17 April 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article