9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of Saccharomyces cerevisiae fermentation products and subacute ruminal acidosis on feed intake, fermentation, and nutrient digestibilities in lactating dairy cows

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effects of Saccharomyces cerevisiae fermentation products (SCFP) and subacute ruminal acidosis (SARA) on rumen and hindgut fermentation, feed intake, and total tract nutrient digestibilities were determined in 32 lactating Holstein cows between weeks 4 and 9 of lactation. Treatments included control, 14 g·d −1 Diamond V Original XPC™ (SCFPa; Diamond V, Cedar Rapids, IA, USA), 19 g·d −1 NutriTek ® (SCFPb-1X; Diamond V), and 38 g·d −1 NutriTek ® (SCFPb-2X; Diamond V). During weeks 5 and 8, SARA challenges were conducted by switching from a 18.6% to a 27.9% dry matter (DM) starch diet. This reduced the rumen and feces pH. The durations of the rumen pH below 5.6 during these challenges averaged 175.0, 233.8, 246.9, and 79.3 min·d −1 for the control, SCFPa, SCFPb-1X, and SCFPb-2X treatments, respectively. Hence, SARA was not induced under the SCFPb-2X treatment. The feces pH during the SARA challenges was lowest during SCFPb-2X, suggesting this treatment shifted fermentation from the rumen to the hindgut. The SARA challenges reduced the total tract digestibility of DM, neutral detergent fiber digestibility (NDFd), and phosphorus, but tended to increase that of starch. The SCFPb-2X treatment increased the NDFd from 52.7% to 61.8% (P < 0.05). The SCFPb-2X treatment attenuated impacts of SARA.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.

          There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. The original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306; Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Triethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch, their fermentations are like that of cellulose but faster and yield no lactic acid. Physical and biological properties of carbohydrate fractions are more important than their intrinsic composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of diet on short-term regulation of feed intake by lactating dairy cattle.

            M S Allen (2000)
            Physical and chemical characteristics of dietary ingredients and their interactions can have a large effect on dry matter intake (DMI) of lactating cows. Physical limitations caused by distension of the reticulo-rumen or other compartments of the gastrointestinal tract often limit DMI of high producing cows or cows fed high forage diets. Fermentation acids also limit DMI from a combination of increased osmolality in the reticulo-rumen and specific effects of propionate, although the mechanisms are not clear. The specific physical and chemical characteristics of diets that can affect DMI include fiber content, ease of hydrolysis of starch and fiber, particle size, particle fragility, silage fermentation products, concentration and characteristics of fat, and the amount and ruminal degradation of protein. Site of starch digestion affects the form of metabolic fuel absorbed, which can affect DMI because absorbed propionate appears to be more hypophagic than lactate or absorbed glucose. Dry matter intake is likely determined by integration of signals in brain satiety centers. Difficulty in measurement and extensive interactions among the variables make it challenging to account for dietary effects when predicting DMI. However, a greater understanding of the mechanisms along with evaluation of animal responses to diet changes allows diet adjustments to be made to optimize DMI as well as to optimize allocation of diet ingredients to animals. This paper discusses some of the characteristics of dietary ingredients that should be considered when formulating diets for lactating dairy cows and when allocating feeds to different groups of animals on the farm.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies

                Bookmark

                Author and article information

                Journal
                Canadian Journal of Animal Science
                Can. J. Anim. Sci.
                Canadian Science Publishing
                0008-3984
                1918-1825
                March 01 2021
                March 01 2021
                : 101
                : 1
                : 143-157
                Affiliations
                [1 ]Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
                [2 ]Diamond V, Cedar Rapids, IA 52404, USA.
                Article
                10.1139/cjas-2020-0018
                7a59598a-ad7c-4011-8abc-b57f84772c52
                © 2021

                http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining

                History

                Comments

                Comment on this article