7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bacterial Alkaloids Prevent Amoebal Predation

      , , , ,
      Angewandte Chemie International Edition
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity

          The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great importance to identify and annotate new gene clusters that produce secondary metabolites. Prediction of A-domain specificity based on the sequence alone can be achieved through sequence signatures or, more accurately, through machine learning methods. We present an improved predictor, based on previous work (NRPSpredictor), that predicts A-domain specificity using Support Vector Machines on four hierarchical levels, ranging from gross physicochemical properties of an A-domain’s substrates down to single amino acid substrates. The three more general levels are predicted with an F-measure better than 0.89 and the most detailed level with an average F-measure of 0.80. We also modeled the applicability domain of our predictor to estimate for new A-domains whether they lie in the applicability domain. Finally, since there are also NRPS that play an important role in natural products chemistry of fungi, such as peptaibols and cephalosporins, we added a predictor for fungal A-domains, which predicts gross physicochemical properties with an F-measure of 0.84. The service is available at http://nrps.informatik.uni-tuebingen.de/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Off the hook--how bacteria survive protozoan grazing.

            Bacterial growth and survival in numerous environments are constrained by the action of bacteria-consuming protozoa. Recent findings suggest that bacterial adaptations against protozoan predation might have a significant role in bacterial persistence and diversification. We argue that selective predation has given rise to diverse routes of bacterial defense, including adaptive mechanisms in bacterial biofilms, and has promoted major transitions in bacterial evolution, such as multicellularity and pathogenesis. We propose that studying predation-driven adaptations will provide an exciting frontier for microbial ecology and evolution at the interface of prokaryotes and eukaryotes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa.

              Type III secretion systems are toxin delivery systems that are present in a large number of pathogens. A hallmark of all type III secretion systems studied to date is that expression of one or more of their components is induced upon cell contact. It has been proposed that this induction is controlled by a negative regulator that is itself secreted by means of the type III secretion machinery. Although candidate proteins for this negative regulator have been proposed in a number of systems, for the most part, a direct demonstration of their role in regulation is lacking. Here, we report the discovery of ExsE, a negative regulator of type III secretion gene expression in Pseudomonas aeruginosa. Deletion of exsE deregulates expression of the type III secretion genes. We provide evidence that ExsE is itself secreted by means of the type III secretion machinery and physically interacts with ExsC, a positive regulator of the type III secretion regulon. Taken together, these data demonstrate that ExsE is the secreted negative regulator that couples triggering of the type III secretion machinery to induction of the type III secretion genes.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley-Blackwell
                14337851
                July 25 2016
                July 25 2016
                : 55
                : 31
                : 8944-8947
                Article
                10.1002/anie.201603312
                7a762bf4-b97a-423f-882f-94add4c26b2b
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article