48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Carbon-Nanotube Optoacoustic Lens for Focused Ultrasound Generation and High-Precision Targeted Therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate a new optical approach to generate high-frequency (>15 MHz) and high-amplitude focused ultrasound, which can be used for non-invasive ultrasound therapy. A nano-composite film of carbon nanotubes (CNTs) and elastomeric polymer is formed on concave lenses, and used as an efficient optoacoustic source due to the high optical absorption of the CNTs and rapid heat transfer to the polymer upon excitation by pulsed laser irradiation. The CNT-coated lenses can generate unprecedented optoacoustic pressures of >50 MPa in peak positive on a tight focal spot of 75 μm in lateral and 400 μm in axial widths. This pressure amplitude is remarkably high in this frequency regime, producing pronounced shock effects and non-thermal pulsed cavitation at the focal zone. We demonstrate that the optoacoustic lens can be used for micro-scale ultrasonic fragmentation of solid materials and a single-cell surgery in terms of removing the cells from substrates and neighboring cells.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          High-intensity focused ultrasound in the treatment of solid tumours.

          Traditionally, surgery has been the only cure for many solid tumours. Technological advances have catalysed a shift from open surgery towards less invasive techniques. Laparoscopic surgery and minimally invasive techniques continue to evolve, but for decades high-intensity focused ultrasound has promised to deliver the ultimate objective - truly non-invasive tumour ablation. Only now, however, with recent improvements in imaging, has this objective finally emerged as a real clinical possibility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Focused ultrasound modulates region-specific brain activity.

            We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects.

              The purpose of this study was to develop a unified model capable of explaining the mechanisms of interaction of ultrasound and biological tissue at both the diagnostic nonthermal, noncavitational ( 100 mW · cm(-2)) spatial peak temporal average intensity levels. The cellular-level model (termed "bilayer sonophore") combines the physics of bubble dynamics with cell biomechanics to determine the dynamic behavior of the two lipid bilayer membrane leaflets. The existence of such a unified model could potentially pave the way to a number of controlled ultrasound-assisted applications, including CNS modulation and blood-brain barrier permeabilization. The model predicts that the cellular membrane is intrinsically capable of absorbing mechanical energy from the ultrasound field and transforming it into expansions and contractions of the intramembrane space. It further predicts that the maximum area strain is proportional to the acoustic pressure amplitude and inversely proportional to the square root of the frequency (ε A,max ∝ P(A)(0.8f - 0.5) and is intensified by proximity to free surfaces, the presence of nearby microbubbles in free medium, and the flexibility of the surrounding tissue. Model predictions were experimentally supported using transmission electron microscopy (TEM) of multilayered live-cell goldfish epidermis exposed in vivo to continuous wave (CW) ultrasound at cavitational (1 MHz) and noncavitational (3 MHz) conditions. Our results support the hypothesis that ultrasonically induced bilayer membrane motion, which does not require preexistence of air voids in the tissue, may account for a variety of bioeffects and could elucidate mechanisms of ultrasound interaction with biological tissue that are currently not fully understood.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                18 December 2012
                2012
                : 2
                : 989
                Affiliations
                [1 ]Department of Electrical Engineering and Computer Science, The University of Michigan , Ann Arbor, MI 48109 USA
                [2 ]Department of Mechanical Engineering, The University of Michigan , Ann Arbor, MI 48109 USA
                [3 ]Department of Biomedical Engineering, The University of Michigan , Ann Arbor, MI 48109 USA
                [4 ]Current address: Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 USA
                Author notes
                Article
                srep00989
                10.1038/srep00989
                3524551
                23251775
                7a84490f-01ce-4c7e-88f7-0ffc94bb3112
                Copyright © 2012, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 05 September 2012
                : 06 November 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article