45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bias, robustness and scalability in single-cell differential expression analysis

      ,
      Nature Methods
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many methods have been used to determine differential gene expression from single-cell RNA (scRNA)-seq data. We evaluated 36 approaches using experimental and synthetic data and found considerable differences in the number and characteristics of the genes that are called differentially expressed. Prefiltering of lowly expressed genes has important effects, particularly for some of the methods developed for bulk RNA-seq data analysis. However, we found that bulk RNA-seq analysis methods do not generally perform worse than those developed specifically for scRNA-seq. We also present conquer, a repository of consistently processed, analysis-ready public scRNA-seq data sets that is aimed at simplifying method evaluation and reanalysis of published results. Each data set provides abundance estimates for both genes and transcripts, as well as quality control and exploratory analysis reports.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: not found
          • Article: not found

          Individual Comparisons by Ranking Methods

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Independent filtering increases detection power for high-throughput experiments.

            With high-dimensional data, variable-by-variable statistical testing is often used to select variables whose behavior differs across conditions. Such an approach requires adjustment for multiple testing, which can result in low statistical power. A two-stage approach that first filters variables by a criterion independent of the test statistic, and then only tests variables which pass the filter, can provide higher power. We show that use of some filter/test statistics pairs presented in the literature may, however, lead to loss of type I error control. We describe other pairs which avoid this problem. In an application to microarray data, we found that gene-by-gene filtering by overall variance followed by a t-test increased the number of discoveries by 50%. We also show that this particular statistic pair induces a lower bound on fold-change among the set of discoveries. Independent filtering-using filter/test pairs that are independent under the null hypothesis but correlated under the alternative-is a general approach that can substantially increase the efficiency of experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple-laboratory comparison of microarray platforms.

              Microarray technology is a powerful tool for measuring RNA expression for thousands of genes at once. Various studies have been published comparing competing platforms with mixed results: some find agreement, others do not. As the number of researchers starting to use microarrays and the number of cross-platform meta-analysis studies rapidly increases, appropriate platform assessments become more important. Here we present results from a comparison study that offers important improvements over those previously described in the literature. In particular, we noticed that none of the previously published papers consider differences between labs. For this study, a consortium of ten laboratories from the Washington, DC-Baltimore, USA, area was formed to compare data obtained from three widely used platforms using identical RNA samples. We used appropriate statistical analysis to demonstrate that there are relatively large differences in data obtained in labs using the same platform, but that the results from the best-performing labs agree rather well.
                Bookmark

                Author and article information

                Journal
                Nature Methods
                Nat Meth
                Springer Nature
                1548-7091
                1548-7105
                February 26 2018
                February 26 2018
                :
                :
                Article
                10.1038/nmeth.4612
                29481549
                7a88e79d-a58d-4165-8fcb-e0f94f363adc
                © 2018
                History

                Comments

                Comment on this article