1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Concordance rate in cattle and sheep between genotypes differing in Illumina GenCall quality score

      1 , 1 , 2 , 3 , 1
      Animal Genetics
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of total genetic value using genome-wide dense marker maps.

          Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of approximately 50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was simulated with a marker spacing of 1 cM. The markers surrounding every 1-cM region were combined into marker haplotypes. Due to finite population size N(e) = 100, the marker haplotypes were in linkage disequilibrium with the QTL located between the markers. Using least squares, all haplotype effects could not be estimated simultaneously. When only the biggest effects were included, they were overestimated and the accuracy of predicting genetic values of the offspring of the recorded animals was only 0.32. Best linear unbiased prediction of haplotype effects assumed equal variances associated to each 1-cM chromosomal segment, which yielded an accuracy of 0.73, although this assumption was far from true. Bayesian methods that assumed a prior distribution of the variance associated with each chromosome segment increased this accuracy to 0.85, even when the prior was not correct. It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Polygenic risk scores: from research tools to clinical instruments

            Genome-wide association studies have shown unequivocally that common complex disorders have a polygenic genetic architecture and have enabled researchers to identify genetic variants associated with diseases. These variants can be combined into a polygenic risk score that captures part of an individual’s susceptibility to diseases. Polygenic risk scores have been widely applied in research studies, confirming the association between the scores and disease status, but their clinical utility has yet to be established. Polygenic risk scores may be used to estimate an individual’s lifetime genetic risk of disease, but the current discriminative ability is low in the general population. Clinical implementation of polygenic risk score (PRS) may be useful in cohorts where there is a higher prior probability of disease, for example, in early stages of diseases to assist in diagnosis or to inform treatment choices. Important considerations are the weaker evidence base in application to non-European ancestry and the challenges in translating an individual’s PRS from a percentile of a normal distribution to a lifetime disease risk. In this review, we consider how PRS may be informative at different points in the disease trajectory giving examples of progress in the field and discussing obstacles that need to be addressed before clinical implementation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Data quality control in genetic case-control association studies.

              This protocol details the steps for data quality assessment and control that are typically carried out during case-control association studies. The steps described involve the identification and removal of DNA samples and markers that introduce bias. These critical steps are paramount to the success of a case-control study and are necessary before statistically testing for association. We describe how to use PLINK, a tool for handling SNP data, to perform assessments of failure rate per individual and per SNP and to assess the degree of relatedness between individuals. We also detail other quality-control procedures, including the use of SMARTPCA software for the identification of ancestral outliers. These platforms were selected because they are user-friendly, widely used and computationally efficient. Steps needed to detect and establish a disease association using case-control data are not discussed here. Issues concerning study design and marker selection in case-control studies have been discussed in our earlier protocols. This protocol, which is routinely used in our labs, should take approximately 8 h to complete.
                Bookmark

                Author and article information

                Contributors
                Journal
                Animal Genetics
                Anim. Genet.
                Wiley
                0268-9146
                1365-2052
                April 2021
                February 2021
                April 2021
                : 52
                : 2
                : 208-213
                Affiliations
                [1 ]Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark Fermoy Co. CorkP61 P302Ireland
                [2 ]Irish Cattle Breeding Federation Highfield House, Shinagh Bandon Co. CorkP72 X050Ireland
                [3 ]Sheep Ireland Highfield House, Shinagh Bandon Co. CorkP72 X050Ireland
                Article
                10.1111/age.13043
                33527466
                7a9fe6c0-70c9-41d9-a8f4-da97f69b759b
                © 2021

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article