4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identifying High-Risk Events for COVID-19 Transmission: Estimating the Risk of Clustering Using Nationwide Data

      , ,
      Viruses
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to be overdispersed, meaning that only a fraction of infected cases contributes to super-spreading. While cluster interventions are an effective measure for controlling pandemics due to the viruses’ overdispersed nature, a quantitative assessment of the risk of clustering has yet to be sufficiently presented. Using systematically collected cluster surveillance data for coronavirus disease 2019 (COVID-19) from June 2020 to June 2021 in Japan, we estimated the activity-dependent risk of clustering in 23 establishment types. The analysis indicated that elderly care facilities, welfare facilities for people with disabilities, and hospitals had the highest risk of clustering, with 4.65 (95% confidence interval [CI]: 4.43–4.87), 2.99 (2.59–3.46), and 2.00 (1.88–2.12) cluster reports per million event users, respectively. Risks in educational settings were higher overall among older age groups, potentially being affected by activities with close and uncontrollable contact during extracurricular hours. In dining settings, drinking and singing increased the risk by 10- to 70-fold compared with regular eating settings. The comprehensive analysis of the COVID-19 cluster records provides an additional scientific basis for the design of customized interventions.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study

          Summary Background Data for front-line health-care workers and risk of COVID-19 are limited. We sought to assess risk of COVID-19 among front-line health-care workers compared with the general community and the effect of personal protective equipment (PPE) on risk. Methods We did a prospective, observational cohort study in the UK and the USA of the general community, including front-line health-care workers, using self-reported data from the COVID Symptom Study smartphone application (app) from March 24 (UK) and March 29 (USA) to April 23, 2020. Participants were voluntary users of the app and at first use provided information on demographic factors (including age, sex, race or ethnic background, height and weight, and occupation) and medical history, and subsequently reported any COVID-19 symptoms. We used Cox proportional hazards modelling to estimate multivariate-adjusted hazard ratios (HRs) of our primary outcome, which was a positive COVID-19 test. The COVID Symptom Study app is registered with ClinicalTrials.gov, NCT04331509. Findings Among 2 035 395 community individuals and 99 795 front-line health-care workers, we recorded 5545 incident reports of a positive COVID-19 test over 34 435 272 person-days. Compared with the general community, front-line health-care workers were at increased risk for reporting a positive COVID-19 test (adjusted HR 11·61, 95% CI 10·93–12·33). To account for differences in testing frequency between front-line health-care workers and the general community and possible selection bias, an inverse probability-weighted model was used to adjust for the likelihood of receiving a COVID-19 test (adjusted HR 3·40, 95% CI 3·37–3·43). Secondary and post-hoc analyses suggested adequacy of PPE, clinical setting, and ethnic background were also important factors. Interpretation In the UK and the USA, risk of reporting a positive test for COVID-19 was increased among front-line health-care workers. Health-care systems should ensure adequate availability of PPE and develop additional strategies to protect health-care workers from COVID-19, particularly those from Black, Asian, and minority ethnic backgrounds. Additional follow-up of these observational findings is needed. Funding Zoe Global, Wellcome Trust, Engineering and Physical Sciences Research Council, National Institutes of Health Research, UK Research and Innovation, Alzheimer's Society, National Institutes of Health, National Institute for Occupational Safety and Health, and Massachusetts Consortium on Pathogen Readiness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals

            The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood1-3. Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding; this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions; however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study

              Summary Background Rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, prompted heightened surveillance in Shenzhen, China. The resulting data provide a rare opportunity to measure key metrics of disease course, transmission, and the impact of control measures. Methods From Jan 14 to Feb 12, 2020, the Shenzhen Center for Disease Control and Prevention identified 391 SARS-CoV-2 cases and 1286 close contacts. We compared cases identified through symptomatic surveillance and contact tracing, and estimated the time from symptom onset to confirmation, isolation, and admission to hospital. We estimated metrics of disease transmission and analysed factors influencing transmission risk. Findings Cases were older than the general population (mean age 45 years) and balanced between males (n=187) and females (n=204). 356 (91%) of 391 cases had mild or moderate clinical severity at initial assessment. As of Feb 22, 2020, three cases had died and 225 had recovered (median time to recovery 21 days; 95% CI 20–22). Cases were isolated on average 4·6 days (95% CI 4·1–5·0) after developing symptoms; contact tracing reduced this by 1·9 days (95% CI 1·1–2·7). Household contacts and those travelling with a case were at higher risk of infection (odds ratio 6·27 [95% CI 1·49–26·33] for household contacts and 7·06 [1·43–34·91] for those travelling with a case) than other close contacts. The household secondary attack rate was 11·2% (95% CI 9·1–13·8), and children were as likely to be infected as adults (infection rate 7·4% in children <10 years vs population average of 6·6%). The observed reproductive number (R) was 0·4 (95% CI 0·3–0·5), with a mean serial interval of 6·3 days (95% CI 5·2–7·6). Interpretation Our data on cases as well as their infected and uninfected close contacts provide key insights into the epidemiology of SARS-CoV-2. This analysis shows that isolation and contact tracing reduce the time during which cases are infectious in the community, thereby reducing the R. The overall impact of isolation and contact tracing, however, is uncertain and highly dependent on the number of asymptomatic cases. Moreover, children are at a similar risk of infection to the general population, although less likely to have severe symptoms; hence they should be considered in analyses of transmission and control. Funding Emergency Response Program of Harbin Institute of Technology, Emergency Response Program of Peng Cheng Laboratory, US Centers for Disease Control and Prevention.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                VIRUBR
                Viruses
                Viruses
                MDPI AG
                1999-4915
                February 2023
                February 06 2023
                : 15
                : 2
                : 456
                Article
                10.3390/v15020456
                7aa27fb3-50e4-4e5c-8334-0cddd77af7a0
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article