205
views
0
recommends
+1 Recommend
0 collections
    7
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HIV-1 Vpr—a still “enigmatic multitasker”

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery.

          Protein ubiquitination is a common form of post-translational modification that regulates a broad spectrum of protein substrates in diverse cellular pathways. Through a three-enzyme (E1-E2-E3) cascade, the attachment of ubiquitin to proteins is catalysed by the E3 ubiquitin ligase, which is best represented by the superfamily of the cullin-RING complexes. Conserved from yeast to human, the DDB1-CUL4-ROC1 complex is a recently identified cullin-RING ubiquitin ligase, which regulates DNA repair, DNA replication and transcription, and can also be subverted by pathogenic viruses to benefit viral infection. Lacking a canonical SKP1-like cullin adaptor and a defined substrate recruitment module, how the DDB1-CUL4-ROC1 E3 apparatus is assembled for ubiquitinating various substrates remains unclear. Here we present crystallographic analyses of the virally hijacked form of the human DDB1-CUL4A-ROC1 machinery, which show that DDB1 uses one beta-propeller domain for cullin scaffold binding and a variably attached separate double-beta-propeller fold for substrate presentation. Through tandem-affinity purification of human DDB1 and CUL4A complexes followed by mass spectrometry analysis, we then identify a novel family of WD40-repeat proteins, which directly bind to the double-propeller fold of DDB1 and serve as the substrate-recruiting module of the E3. Together, our structural and proteomic results reveal the structural mechanisms and molecular logic underlying the assembly and versatility of a new family of cullin-RING E3 complexes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1.

            Cul4 E3 ubiquitin ligases contain the cullin 4 scaffold and the triple beta propeller Ddb1 adaptor protein, but few substrate receptors have been identified. Here, we identify 18 Ddb1- and Cul4-associated factors (DCAFs), including 14 containing WD40 repeats. DCAFs interact with multiple surfaces on Ddb1, and the interaction of WD40-containing DCAFs with Ddb1 requires a conserved "WDXR" motif. DCAF2/Cdt2, which is related to S. pombe Cdt2, functions in Xenopus egg extracts and human cells to destroy the replication licensing protein Cdt1 in S phase and after DNA damage. Depletion of human Cdt2 causes rereplication and checkpoint activation. In Xenopus, Cdt2 is recruited to replication forks via Cdt1 and PCNA, where Cdt1 ubiquitylation occurs. These studies uncover diverse substrate receptors for Cul4 and identify Cdt2 as a conserved component of the Cul4-Ddb1 E3 that is essential to destroy Cdt1 and ensure proper cell cycle regulation of DNA replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity.

              The Vpr accessory gene product of human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus is believed to play a role in permitting entry of the viral core into the nucleus of nondividing cells. A second role for Vpr was recently suggested by Rogel et al. (M. E. Rogel, L. I. Wu, and M. Emerman, J. Virol. 69:882-888, 1995), who showed that Vpr prevents the establishment in vitro of chronically infected HIV producer cell lines, apparently by causing infected cells to arrest in the G2/M phase of the cell cycle. In cycling cells, progression from G2 to M phase is driven by activation of the p34cdc2/cyclin B complex, an event caused, in part, by dephosphorylation of two regulatory amino acids of p34cdc2 (Thr-14 and Tyr-15). We show here that Vpr arrests the cell cycle in G2 by preventing the activation of the p34cdc2/cyclin B complex. Vpr expression in cells caused p34cdc2 to remain in the phosphorylated, inactive state, p34cdc2/cyclin B complexes immunoprecipitated from cells expressing Vpr were almost completely inactive in a histone H1 kinase assay. Coexpression of a constitutively active mutant p34cdc2 molecule with Vpr relieved the G2 arrest. These findings strongly suggest that Vpr arrests cells in G2 by preventing the activation of the p34cdc2/cyclin B complex that is required for entry into M phase. In vivo, Vpr might, by preventing p34cdc2 activation, delay or prevent apoptosis of infected cells. This would increase the amount of virus each infected cell produced.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                31 March 2014
                2014
                : 5
                : 127
                Affiliations
                Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
                Author notes

                Edited by: Nadine Laguette, Centre National de la Recherche Scientifique, France

                Reviewed by: Ryuta Sakuma, Tokyo Medical and Dental University, Japan; Carlos M. De Noronha, Albany Medical College, USA

                *Correspondence: Serge Benichou, Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes, 22 rue Méchain, 75014 Paris, France e-mail: serge.benichou@ 123456inserm.fr

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology.

                Article
                10.3389/fmicb.2014.00127
                3978352
                24744753
                7ab7e90c-25c2-42dd-8ada-badd3836d9d8
                Copyright © 2014 Guenzel, Hérate and Benichou.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 February 2013
                : 12 March 2014
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 188, Pages: 13, Words: 13649
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                hiv-1 vpr,reverse transcription,cell cycle,apoptosis,nuclear import
                Microbiology & Virology
                hiv-1 vpr, reverse transcription, cell cycle, apoptosis, nuclear import

                Comments

                Comment on this article