12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The relationship between DNA methylation and Reprimo gene expression in gastric cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reprimo (RPRM) is a tumor suppressor involved in the development of a number of malignant tumors including gastric cancer which is highly related to its gene hypermethylation. However, the regulation of RPRM gene expression by DNA methylation in gastric cancer is not well understood. We examined the RPRM gene methylation in gastric cancer tissues or plasma samples by bisulfite sequencing, and investigated the relationship between DNA methylation and the RPRM gene expression by quantitative reverse transcription-PCR and Western blotting. We found that the RPRM gene promoter region is hypermethylated in gastric cancer tissues (75%, 45/60), plasma samples (86.3%, 44/51) and various cancer cell lines (75%, 3/4), which is correlated with the decrease of RPRM gene expression. The hypermethylation-induced RPRM reduction can be recovered by treating with zebularine, a demethylating agent, and by inhibition of the DNA methyltransferases via RNA interference and CRISPR/Cas9-mediated gene knockout. In addition, we generated RPRM gene-knockout cells and studied the effects of the RPRM deficiency on tumor formation by inoculating these cells in mice. The data show that the loss of RPRM can promote tumorigenesis. These data suggest that the RPRM expression is inhibited by DNA methyltransferases and the RPRM normal function can be restored by treating with DNA methylation inhibitors. The study provides important information regarding the role of RPRM and its methylation related to gastric cancer development.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Structure and function of mammalian DNA methyltransferases.

          DNA methylation plays an important role in epigenetic signalling, having an impact on gene regulation, chromatin structure, development and disease. Here, we review the structures and functions of the mammalian DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b, including their domain structures, catalytic mechanisms, localisation, regulation, post-translational modifications and interaction with chromatin and other proteins, summarising data obtained in genetic, cell biology and enzymatic studies. We focus on the question of how the molecular and enzymatic properties of these enzymes are connected to the dynamics of DNA methylation patterns and to the roles the enzymes play in the processes of de novo and maintenance DNA methylation. Recent enzymatic and genome-wide methylome data have led to a new model of genomic DNA methylation patterns based on the preservation of average levels of DNA methylation in certain regions, rather than the methylation states of individual CG sites. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation, methyltransferases, and cancer.

            The field of epigenetics has recently moved to the forefront of studies relating to diverse processes such as transcriptional regulation, chromatin structure, genome integrity, and tumorigenesis. Recent work has revealed how DNA methylation and chromatin structure are linked at the molecular level and how methylation anomalies play a direct causal role in tumorigenesis and genetic disease. Much new information has also come to light regarding the cellular methylation machinery, known as the DNA methyltransferases, in terms of their roles in mammalian development and the types of proteins they are known to interact with. This information has forced a new view for the role of DNA methyltransferases. Rather than enzymes that act in isolation to copy methylation patterns after replication, the types of interactions discovered thus far indicate that DNA methyltransferases may be components of larger complexes actively involved in transcriptional control and chromatin structure modulation. These new findings will likely enhance our understanding of the myriad roles of DNA methylation in disease as well as point the way to novel therapies to prevent or repair these defects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of mammalian DNA methyltransferases: a route to new mechanisms.

              DNA methyltransferases (DNMTs) establish and maintain DNA methylation patterns at specific regions of the genome, thereby contributing to gene regulation. It is becoming evident that an intricate web of pathways target DNMTs to these genomic regions. Here, we review the understanding of these regulatory mechanisms and provide an overview of the new findings, emphasizing the emerging scenario in which several levels of regulation are coordinated to control DNMTs. The mechanisms involved include the dynamic interplay between interdependent post-translational modifications that regulate DNMTs, post-transcriptional regulation by miRNAs and the emerging role of non-coding RNA in targeting mammalian DNMTs. The analysis of these mechanisms is imperative to the understanding of the role of DNA methylation in regulating gene expression during development and in disease.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                12 December 2017
                28 September 2017
                : 8
                : 65
                : 108610-108623
                Affiliations
                1 Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, China
                2 The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
                Author notes
                Correspondence to: Qi Chen, nfsw@ 123456fjnu.edu.cn
                [*]

                These authors contributed equally to this work

                Article
                21296
                10.18632/oncotarget.21296
                5752468
                7b22944b-51e3-4a05-bfff-525a1bc596ff
                Copyright: © 2017 Lai et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 December 2016
                : 13 September 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                gastric cancer,reprimo,dna methylation,dna methyltransferase,zebularine
                Oncology & Radiotherapy
                gastric cancer, reprimo, dna methylation, dna methyltransferase, zebularine

                Comments

                Comment on this article