8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DA5-CH and Semaglutide Protect against Neurodegeneration and Reduce α-Synuclein Levels in the 6-OHDA Parkinson's Disease Rat Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insulin desensitization has been observed in the brains of patients with Parkinson's disease (PD), which is a progressive neurodegenerative disorder for which there is no cure. Semaglutide is a novel long-actingglucagon-likepeptide-1 (GLP-1) receptor agonist that is on the market as a treatment for type 2 diabetes. It is in a phase II clinical trial in patients with PD. Two previous phase II trials in PD patients showed good effects with the older GLP-1 receptor agonists, exendin-4 and liraglutide. We have developed a dual GLP-1/GIP receptor agonist (DA5-CH) that can cross the blood-brain barrier (BBB) at a higher rate than semaglutide. We tested semaglutide and DA5-CH in the 6-OHDA-lesion rat model of PD. Treatment was semaglutide or DA5-CH (25 nmol/kg, i.p.) daily for 30 days postlesion. Both drugs reduced the apomorphine-induced rotational behavior and alleviated dopamine depletion and the inflammation response in the lesioned striatum as shown in reduced IL-1 β and TNF- α levels, with DA5-CH being more effective. In addition, both drugs protected dopaminergic neurons and increased TH expression in the substantia nigra. Furthermore, the level of monomer and aggregated α-synuclein was reduced by the drugs, and insulin resistance as shown in reduced pIRS-1 ser312 phosphorylation was also attenuated after drug treatment, with DA5-CH being more effective. Therefore, while semaglutide showed good effects in this PD model, DA5-CH was superior and may be a better therapeutic drug for neurodegenerative disorders such as PD than GLP-1 receptor agonists that do not easily cross the BBB.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: not found
          • Article: not found

          Alpha-synuclein in Lewy bodies.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice.

            Parkinson's disease is characterized by abundant α-synuclein (α-Syn) neuronal inclusions, known as Lewy bodies and Lewy neurites, and the massive loss of midbrain dopamine neurons. However, a cause-and-effect relationship between Lewy inclusion formation and neurodegeneration remains unclear. Here, we found that in wild-type nontransgenic mice, a single intrastriatal inoculation of synthetic α-Syn fibrils led to the cell-to-cell transmission of pathologic α-Syn and Parkinson's-like Lewy pathology in anatomically interconnected regions. Lewy pathology accumulation resulted in progressive loss of dopamine neurons in the substantia nigra pars compacta, but not in the adjacent ventral tegmental area, and was accompanied by reduced dopamine levels culminating in motor deficits. This recapitulation of a neurodegenerative cascade thus establishes a mechanistic link between transmission of pathologic α-Syn and the cardinal features of Parkinson's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains.

              We detected large numbers of HLA-DR-positive reactive microglia (macrophages), along with Lewy bodies and free melanin, in the substantia nigra of all cases studied with Parkinson's disease (5) and parkinsonism with dementia (PD) (5). We found similar, but less extensive, pathology in the substantia nigra of six of nine cases of dementia of the Alzheimer type (DAT) but in only one of 11 age-matched nonneurologic cases. All dementia cases with a premortem diagnosis of DAT or PD showed large numbers of HLA-DR-positive reactive microglia and significant plaque and tangle counts in the hippocampus, as well as reduced cortical choline acetyltransferase activity. One of 11 nondemented controls showed mild evidence of similar cortical pathology. These data indicate that HLA-DR-positive reactive microglia are a sensitive index of neuropathologic activity. They suggest a frequent coexistence of DAT- and Parkinson-type pathology in elderly patients.
                Bookmark

                Author and article information

                Contributors
                Journal
                Parkinsons Dis
                Parkinsons Dis
                pd
                Parkinson's Disease
                Hindawi
                2090-8083
                2042-0080
                2022
                14 November 2022
                : 2022
                : 1428817
                Affiliations
                1Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
                2Department of Forensic Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
                3Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
                4Second Hospital Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, China
                Author notes

                Academic Editor: Cristine Alves da Costa

                Author information
                https://orcid.org/0000-0002-8159-3260
                Article
                10.1155/2022/1428817
                9678466
                36419409
                7b4fd173-1a0f-48f6-85ea-76759d142000
                Copyright © 2022 Lingyu Zhang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 August 2022
                : 24 October 2022
                : 5 November 2022
                Funding
                Funded by: Shanxi “1331 Project” Key Subjects Construction Fund
                Funded by: Doctoral Start-Up Foundation of Shanxi Province
                Award ID: SD1817
                Categories
                Research Article

                Neurology
                Neurology

                Comments

                Comment on this article