2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new species of Noblella (Amphibia: Strabomantidae) from the Río Manduriacu Reserve on the Pacific slopes of the Ecuadorian Andes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice.

          Vocalizations of anuran amphibians have received much attention in studies of behavioral ecology and physiology, but also provide informative characters for identifying and delimiting species. We here review the terminology and variation of frog calls from a perspective of integrative taxonomy, and provide hands-on protocols for recording, analyzing, comparing, interpreting and describing these sounds. Our focus is on advertisement calls, which serve as premating isolation mechanisms and, therefore, convey important taxonomic information. We provide recommendations for terminology of frog vocalizations, with call, note and pulse being the fundamental subunits to be used in descriptions and comparisons. However, due to the complexity and diversity of these signals, an unequivocal application of the terms call and note can be challenging. We therefore provide two coherent concepts that either follow a note-centered approach (defining uninterrupted units of sound as notes, and their entirety as call) or a call-centered approach (defining uninterrupted units as call whenever they are separated by long silent intervals) in terminology. Based on surveys of literature, we show that numerous call traits can be highly variable within and between individuals of one species. Despite idiosyncrasies of species and higher taxa, the duration of calls or notes, pulse rate within notes, and number of pulses per note appear to be more static within individuals and somewhat less affected by temperature. Therefore, these variables might often be preferable as taxonomic characters over call rate or note rate, which are heavily influenced by various factors. Dominant frequency is also comparatively static and only weakly affected by temperature, but depends strongly on body size. As with other taxonomic characters, strong call divergence is typically indicative of species-level differences, whereas call similarities of two populations are no evidence for them being conspecific. Taxonomic conclusions can especially be drawn when the general advertisement call structure of two candidate species is radically different and qualitative call differences are thus observed. On the other hand, quantitative differences in call traits might substantially vary within and among conspecific populations, and require careful evaluation and analysis. We provide guidelines for the taxonomic interpretation of advertisement call differences in sympatric and allopatric situations, and emphasize the need for an integrative use of multiple datasets (bio-acoustics, morphology, genetics), particularly for allopatric scenarios. We show that small-sized frogs often emit calls with frequency components in the ultrasound spectrum, although it is unlikely that these high frequencies are of biological relevance for the majority of them, and we illustrate that detection of upper harmonics depends also on recording distance because higher frequencies are attenuated more strongly. Bioacoustics remains a prime approach in integrative taxonomy of anurans if uncertainty due to possible intraspecific variation and technical artifacts is adequately considered and acknowledged.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ernst Mayr and the modern concept of species.

            Ernst Mayr played a central role in the establishment of the general concept of species as metapopulation lineages, and he is the author of one of the most popular of the numerous alternative definitions of the species category. Reconciliation of incompatible species definitions and the development of a unified species concept require rejecting the interpretation of various contingent properties of metapopulation lineages, including intrinsic reproductive isolation in Mayr's definition, as necessary properties of species. On the other hand, the general concept of species as metapopulation lineages advocated by Mayr forms the foundation of this reconciliation, which follows from a corollary of that concept also advocated by Mayr: the proposition that the species is a fundamental category of biological organization. Although the general metapopulation lineage species concept and Mayr's popular species definition are commonly confused under the name "the biological species concept," they are more or less clearly distinguished in Mayr's early writings on the subject. Virtually all modern concepts and definitions of the species category, not only those that require intrinsic reproductive isolation, are to be considered biological according to the criterion proposed by Mayr. Definitions of the species category that identify a particular contingent property of metapopulation lineages (including intrinsic reproductive isolation) as a necessary property of species reduce the number of metapopulation lineages that are to be recognized taxonomically as species, but they cause conflicts among alternative species definitions and compromise the status of the species as a basic category of biological organization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New World direct-developing frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation

              New World frogs recently placed in a single, enormous family (Brachycephalidae) have direct development and reproduce on land, often far away from water. DNA sequences from mitochondrial and nuclear genes of 344 species were analyzed to estimate their relationships. The molecular phylogeny in turn was used as the basis for a revised classification of the group. The 882 described species are placed in a new taxon, Terrarana, and allocated to four families, four subfamilies, 24 genera, 11 subgenera, 33 species series, 56 species groups, and 11 species subgroups. Systematic accounts are provided for all taxa above the species level. Two families (Craugastoridae and Strabomantidae), three subfamilies (Holoadeninae, Phyzelaphryninae, and Strabomantinae), six genera (Bryophryne, Diasporus, Haddadus, Isodactylus, Lynchius, and Psychrophrynella), and two subgenera (Campbellius and Schwartzius) are proposed and named as new taxa, 13 subspecies are considered to be distinct species, and 613 new combinations are formed. Most of the 100 informal groups (species series, species groups, and species subgroups) are new or newly defined. Brachycephalus and Ischnocnema are placed in Brachycephalidae, a relatively small clade restricted primarily to southeastern Brazil. Eleutherodactylidae includes two subfamilies, four genera, and five subgenera and is centered in the Caribbean region. Craugastoridae contains two genera and three subgenera and is distributed mainly in Middle America. Strabomantidae is distributed primarily in the Andes of northwestern South America and includes two subfamilies, 16 genera, and three subgenera. Images and distribution maps are presented for taxa above the species level and a complete list of species is provided. Aspects of the evolution, biogeography, and conservation of Terrarana are discussed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Neotropical Biodiversity
                Neotropical Biodiversity
                Informa UK Limited
                2376-6808
                January 01 2020
                August 21 2020
                January 01 2020
                : 6
                : 1
                : 162-171
                Affiliations
                [1 ]Instituto de Diversidad Biológica Tropical iBOTROP, Museo de Zoología, Instituto BIOSFERA-USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito , Quito, Ecuador
                [2 ]Instituto Nacional de Biodiversidad (INABIO), Unidad De Investigación , Quito, Ecuador
                [3 ] The Biodiversity Group , Tucson, AZ, USA
                [4 ] Tropical Herping , Quito, Ecuador
                [5 ] Third Millennium Alliance , Fremont, CA, USA
                [6 ] Photo Wildlife Tours , Quito, Ecuador
                [7 ] Fundación Cóndor Andino , Quito, Ecuador
                [8 ] Fundación EcoMinga , Baños, Ecuador
                [9 ]Laboratorio de Biología Evolutiva, Instituto BIOSFERA-USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito , Quito, Ecuador
                Article
                10.1080/23766808.2020.1809287
                7b607727-e4db-478f-8098-3c44af674186
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article