15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevalence of Schistosoma mansoni and S. haematobium in Snail Intermediate Hosts in Africa: A Systematic Review and Meta-analysis

      review-article
      , ,
      Journal of Tropical Medicine
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Schistosomiasis is caused by Schistosoma mansoni and S. haematobium in Africa. These schistosome parasites use freshwater snail intermediate hosts to complete their lifecycle. Varied prevalence rates of these parasites in the snail intermediate hosts were reported from several African countries, but there were no summarized data for policymakers. Therefore, this study was aimed to systematically summarize the prevalence and geographical distribution of S. mansoni and S. haematobium among freshwater snails in Africa.

          Methods

          Literature search was carried out from PubMed, Science Direct, and Scopus which reported the prevalence of S. mansoni and S. haematobium among freshwater snails in Africa. The pooled prevalence was determined using a random-effect model, while heterogeneities between studies were evaluated by I 2 test. The meta-analyses were conducted using Stata software, metan command.

          Results

          A total of 273,643 snails were examined for the presence of S. mansoni and S. haematobium cercaria in the eligible studies. The pooled prevalence of schistosome cercaria among freshwater snails was 5.5% (95% CI: 4.9–6.1%). The pooled prevalence of S. mansoni and S. haematobium cercaria was 5.6% (95% CI: 4.9–6.3%) and 5.2% (95% CI: 4.6–5.7%), respectively. The highest pooled prevalence was observed from Nigeria (19.0%; 95% CI: 12.7–25.3%), while the lowest prevalence was reported from Chad (0.05%; 95% CI: 0.03–0.13). Higher prevalence of schistosome cercaria was observed from Bulinus globosus (12.3%; 95% CI: 6.2–18.3%) followed by Biomphalaria sudanica (6.7%; 95% CI: 4.5–9.0%) and Biomphalaria pfeifferi (5.1%; 95% CI: 4.1–6.2%). The pooled prevalence of schistosome cercaria obtained using PCR was 26.7% in contrast to 4.5% obtained by shedding cercariae.

          Conclusion

          This study revealed that nearly 6% of freshwater snails in Africa were infected by either S. haematobium or S. mansoni. The high prevalence of schistosomes among freshwater snails highlights the importance of appropriate snail control strategies in Africa.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk.

          An estimated 779 million people are at risk of schistosomiasis, of whom 106 million (13.6%) live in irrigation schemes or in close proximity to large dam reservoirs. We identified 58 studies that examined the relation between water resources development projects and schistosomiasis, primarily in African settings. We present a systematic literature review and meta-analysis with the following objectives: (1) to update at-risk populations of schistosomiasis and number of people infected in endemic countries, and (2) to quantify the risk of water resources development and management on schistosomiasis. Using 35 datasets from 24 African studies, our meta-analysis showed pooled random risk ratios of 2.4 and 2.6 for urinary and intestinal schistosomiasis, respectively, among people living adjacent to dam reservoirs. The risk ratio estimate for studies evaluating the effect of irrigation on urinary schistosomiasis was in the range 0.02-7.3 (summary estimate 1.1) and that on intestinal schistosomiasis in the range 0.49-23.0 (summary estimate 4.7). Geographic stratification showed important spatial differences, idiosyncratic to the type of water resources development. We conclude that the development and management of water resources is an important risk factor for schistosomiasis, and hence strategies to mitigate negative effects should become integral parts in the planning, implementation, and operation of future water projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses.

            Variance between studies in a meta-analysis will exist. This heterogeneity may be of clinical, methodological or statistical origin. The last of these is quantified by the I(2) -statistic. We investigated, using simulated studies, the accuracy of I(2) in the assessment of heterogeneity and the effects of heterogeneity on the predictive value of meta-analyses. The relevance of quantifying I(2) was determined according to the likely presence of heterogeneity between studies (low, high, or unknown) and the calculated I(2) (low or high). The findings were illustrated by published meta-analyses of selective digestive decontamination and weaning protocols. As expected, I(2) increases and the likelihood of drawing correct inferences from a meta-analysis decreases with increasing heterogeneity. With low levels of heterogeneity, I(2) does not appear to be predictive of the accuracy of the meta-analysis result. With high levels of heterogeneity, even meta-analyses with low I(2) -values have low predictive values. Most commonly, the level of heterogeneity in a meta-analysis will be unknown. In these scenarios, I(2) determination may help to identify estimates with low predictive values (high I(2) ). In this situation, the results of a meta-analysis will be unreliable. With low I(2) -values and unknown levels of heterogeneity, predictive values of pooled estimates may range extensively, and findings should be interpreted with caution. In conclusion, quantifying statistical heterogeneity through I(2) -statistics is only helpful when the amount of clinical heterogeneity is unknown and I(2) is high. Objective methods to quantify the levels of clinical and methodological heterogeneity are urgently needed to allow reliable determination of the accuracy of meta-analyses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution.

              In May 2001, the World Health Assembly (WHA) passed a resolution which urged member states to attain, by 2010, a minimum target of regularly administering anthelminthic drugs to at least 75% and up to 100% of all school-aged children at risk of morbidity. The refined global strategy for the prevention and control of schistosomiasis and soil-transmitted helminthiasis was issued in the following year and large-scale administration of anthelminthic drugs endorsed as the central feature. This strategy has subsequently been termed 'preventive chemotherapy'. Clearly, the 2001 WHA resolution led the way for concurrently controlling multiple neglected tropical diseases. In this paper, we recall the schistosomiasis situation in Africa in mid-2003. Adhering to strategic guidelines issued by the World Health Organization, we estimate the projected annual treatment needs with praziquantel among the school-aged population and critically discuss these estimates. The important role of geospatial tools for disease risk mapping, surveillance and predictions for resource allocation is emphasised. We clarify that schistosomiasis is only one of many neglected tropical diseases and that considerable uncertainties remain regarding global burden estimates. We examine new control initiatives targeting schistosomiasis and other tropical diseases that are often neglected. The prospect and challenges of integrated control are discussed and the need for combining biomedical, educational and engineering strategies and geospatial tools for sustainable disease control are highlighted. We conclude that, for achieving integrated and sustainable control of neglected tropical diseases, a set of interventions must be tailored to a given endemic setting and fine-tuned over time in response to the changing nature and impact of control. Consequently, besides the environment, the prevailing demographic, health and social systems contexts need to be considered.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Trop Med
                J Trop Med
                JTM
                Journal of Tropical Medicine
                Hindawi
                1687-9686
                1687-9694
                2020
                7 September 2020
                : 2020
                : 8850840
                Affiliations
                Department of Biology, College of Science, Bahir Dar University, Bahir Dar, Ethiopia
                Author notes

                Academic Editor: Pedro P. Chieffi

                Author information
                https://orcid.org/0000-0002-7324-2997
                https://orcid.org/0000-0002-1469-2189
                Article
                10.1155/2020/8850840
                7492904
                32963554
                7b784c62-8f57-48b0-bc9c-ed7db4aaa0d6
                Copyright © 2020 Tamirat Hailegebriel et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 July 2020
                : 26 August 2020
                : 28 August 2020
                Categories
                Review Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article