25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pruned Bit-Reversal Permutations: Mathematical Characterization, Fast Algorithms and Architectures

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A mathematical characterization of serially-pruned permutations (SPPs) employed in variable-length permuters and their associated fast pruning algorithms and architectures are proposed. Permuters are used in many signal processing systems for shuffling data and in communication systems as an adjunct to coding for error correction. Typically only a small set of discrete permuter lengths are supported. Serial pruning is a simple technique to alter the length of a permutation to support a wider range of lengths, but results in a serial processing bottleneck. In this paper, parallelizing SPPs is formulated in terms of recursively computing sums involving integer floor and related functions using integer operations, in a fashion analogous to evaluating Dedekind sums. A mathematical treatment for bit-reversal permutations (BRPs) is presented, and closed-form expressions for BRP statistics are derived. It is shown that BRP sequences have weak correlation properties. A new statistic called permutation inliers that characterizes the pruning gap of pruned interleavers is proposed. Using this statistic, a recursive algorithm that computes the minimum inliers count of a pruned BR interleaver (PBRI) in logarithmic time complexity is presented. This algorithm enables parallelizing a serial PBRI algorithm by any desired parallelism factor by computing the pruning gap in lookahead rather than a serial fashion, resulting in significant reduction in interleaving latency and memory overhead. Extensions to 2-D block and stream interleavers, as well as applications to pruned fast Fourier transforms and LTE turbo interleavers, are also presented. Moreover, hardware-efficient architectures for the proposed algorithms are developed. Simulation results demonstrate 3 to 4 orders of magnitude improvement in interleaving time compared to existing approaches.

          Related collections

          Author and article information

          Journal
          18 October 2014
          Article
          1410.4954
          7bef4637-0719-4ff8-ae3f-ff3dda00bc8d

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          31 pages
          cs.IT math.IT

          Comments

          Comment on this article