Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extracellular Polyphosphate Inhibits Proliferation in an Autocrine Negative Feedback Loop inDictyostelium discoideum

      ,
      Journal of Biological Chemistry
      American Society for Biochemistry & Molecular Biology (ASBMB)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Polyphosphate modulates blood coagulation and fibrinolysis.

          Inorganic polyphosphate is an abundant component of acidocalcisomes of bacteria and unicellular eukaryotes. Human platelet dense granules strongly resemble acidocalcisomes, and we recently showed that they contain substantial amounts of polyphosphate, which is secreted upon platelet activation. We now report that polyphosphate is a potent hemostatic regulator, accelerating blood clotting by activating the contact pathway and promoting the activation of factor V, which in turn results in abrogation of the function of the natural anticoagulant protein, tissue factor pathway inhibitor. Polyphosphate was also found to delay clot lysis by enhancing a natural antifibrinolytic agent, thrombin-activatable fibrinolysis inhibitor. Polyphosphate is unstable in blood or plasma, owing to the presence of phosphatases. We propose that polyphosphate released from platelets or microorganisms initially promotes clot formation and stability; subsequent degradation of polyphosphate by blood phosphatases fosters inhibition of clotting and activation of fibrinolysis during wound healing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inorganic polyphosphate in mammalian cells and tissues.

            Inorganic polyphosphate (polyP), a linear polymer of hundreds of orthophosphate (Pi) residues linked by high-energy, phosphoanhydride bonds, has been identified and measured in a variety of mammalian cell lines and tissues by unambiguous enzyme methods. Subpicomole amounts of polyP (0.5 pmol/100 micrograms of protein) were determined by its conversion to ATP by Escherichia coli polyphosphate kinase and, alternatively, to Pi by Saccharomyces cerevisiae exopolyphosphatase. Levels of 25 to 120 microM (in terms of Pi residues), in chains 50 to 800 residues long, were found in rodent tissues (brain, heart, kidneys, liver, and lungs) and in subcellular fractions (nuclei, mitochondria, plasma membranes, and microsomes). PolyP in brain was predominantly near 800 residues and found at similar levels pre- and postnatally. Conversion of Pi into polyP by cell lines of fibroblasts, T-cells, kidney, and adrenal cells attained levels in excess of 10 pmol per mg of cell protein per h. Synthesis of polyP from Pi in the medium bypasses intracellular Pi and ATP pools suggesting the direct involvement of membrane component(s). In confluent PC12 (adrenal pheochromocytoma) cells, polyP turnover was virtually complete in an hour, whereas in fibroblasts there was little turnover in four hours. The ubiquity of polyP and variations in its size, location, and metabolism are indicative of a multiplicity of functions for this polymer in mammalian systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa.

              The human opportunistic pathogen Pseudomonas aeruginosa causes a variety of infections in immunocompromised hosts and in individuals with cystic fibrosis. A knockout mutation in the polyphosphate kinase (ppk) gene, encoding PPK responsible for the synthesis of inorganic polyphosphate from ATP, renders P. aeruginosa cells unable to form a thick and differentiated biofilm. The mutant is aberrant in quorum sensing and responses in that production of the quorum-sensing controlled virulence factors elastase and rhamnolipid are severely reduced. In a burned-mouse pathogenesis model, the virulence of the mutant is greatly reduced with severe defects in the colonization of mouse tissues. The conservation of PPK among many bacterial pathogens and its absence in eukaryotes suggest that PPK might be an attractive target for antimicrobial drugs.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                September 16 2016
                September 16 2016
                September 16 2016
                August 12 2016
                : 291
                : 38
                : 20260-20269
                Article
                10.1074/jbc.M116.737825
                27519410
                7cb6f066-ce11-4a1b-b69e-6bd9cb656f51
                © 2016
                History

                Comments

                Comment on this article