12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Anatomical Organization of the Parahippocampal-Hippocampal Network

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The anatomical organization of the parahippocampal-hippocampal network indicates that it consists of different parallel circuits. Considering the topographical distribution of sensory cortical inputs, the hypothesis is that the major parallel circuits carry functionally different information. These functionally different parallel routes reach different portions of the hippocampal network along the longitudinal axis of all fields as well as along the perpendicularly oriented transverse axis of CA1 and the subiculum. In the remaining fields of the hippocampal formation, that is, the dentate gyrus and CA2/CA3, separation along the transverse axis is not present. By contrast, here the functionally different pathways converge onto the same neuronal population. The entorhinal cortex holds a pivotal position among the cortices that make up the parahippocampal region. By way of the networks of the superficial and deep layers, it mediates, respectively, the input and output streams of the hippocampal formation. Moreover, the intrinsic entorhinal network, particularly the interconnections between the deep and superficial layers, may mediate the comparison of hippocampal input and output signals. As such, the entorhinal cortex may form part of a novelty detection network. In addition, the organization of the entorhinal-hippocampal network may facilitate the holding of information. Finally, the terminal organization of the presubicular input to the medial entorhinal cortex indicates that the interactions between the deep and superficial entorhinal layers may be influenced by this input.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat.

          The efferent connections of the hippocampal formation of the rat have been re-examined autoradiographically following the injection of small quantities of 3H-amino acids (usually 3H-proline) into different parts of Ammon's horn and the adjoining structures. The findings indicate quite clearly that each component of the hippocampal formation has a distinctive pattern of efferent connections and that each component of the fornix system arises from a specific subdivision of the hippocampus or the adjoining cortical fields. Thus, the precommissural fornix has been found to originate solely in fields CA1-3 of the hippocampus proper and from the subiculum; the projection to the anterior nuclear complex of the thalamus arises more posteriorly in the pre- and/or parasubiculum and the postsubicular area; the projection to the mammillary complex which comprises a major part of the descending columns of the fornix has its origin in the dorsal subiculum and the pre- and/or parasubiculum; and finally, the medial cortico-hypothalamic tract arises from the ventral subiculum. The lateral septal nuclei (and the adjoining parts of the posterior septal complex) constitute the only subcortical projection field of the pyramidal cells in fields CA1-3 of Ammon's horn. There is a rostral extension of the pre-commissural fornix to the bed nucleus of the stria terminalis, the nucleus accumbens, the medial and posterior parts of the anterior olfactory nucleus, the taenia tecta, and the infralimbic area, which appears to arise from the temporal part of field CA1 or the adjacent part of the ventral subiculum. The projection of Ammon's horn upon the lateral septal complex shows a high degree of topographic organization (such that different parts of fields CA1 and CA3 project in an ordered manner to different zones within the lateral septal nucleus). The septal projection of "CA2" and field CA3 is bilateral, while that of field CA1 is strictly unilateral. In addition to its subcortical projections, the hippocampus has been found to give rise to a surprisingly extensive series of intracortical association connections. For example, all parts of fields CA1, CA2 and CA3 project to the subiculum, and at least some parts of these fields send fibers to the pre- and parasubiculum, and to the entorhinal perirhinal, retrosplenial and cingulate areas. From the region of the pre- and parasubiculum there is a projection to the entorhinal cortex and the parasubiculum of both sides. That part of the postsubiculum (= dorsal part of the presubiculum) which we have examined has been found to project to the cingulate and retrosplenial areas ipsilaterally, and to the entorhinal cortex and parasubiculum bilaterally.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat.

            We have divided the cortical regions surrounding the rat hippocampus into three cytoarchitectonically discrete cortical regions, the perirhinal, the postrhinal, and the entorhinal cortices. These regions appear to be homologous to the monkey perirhinal, parahippocampal, and entorhinal cortices, respectively. The origin of cortical afferents to these regions is well-documented in the monkey but less is known about them in the rat. The present study investigated the origins of cortical input to the rat perirhinal (areas 35 and 36) and postrhinal cortices and the lateral and medial subdivisions of the entorhinal cortex (LEA and MEA) by placing injections of retrograde tracers at several locations within each region. For each experiment, the total numbers of retrogradely labeled cells (and cell densities) were estimated for 34 cortical regions. We found that the complement of cortical inputs differs for each of the five regions. Area 35 receives its heaviest input from entorhinal, piriform, and insular areas. Area 36 receives its heaviest projections from other temporal cortical regions such as ventral temporal association cortex. Area 36 also receives substantial input from insular and entorhinal areas. Whereas area 36 receives similar magnitudes of input from cortices subserving all sensory modalities, the heaviest projections to the postrhinal cortex originate in visual associational cortex and visuospatial areas such as the posterior parietal cortex. The cortical projections to the LEA are heavier than to the MEA and differ in origin. The LEA is primarily innervated by the perirhinal, insular, piriform, and postrhinal cortices. The MEA is primarily innervated by the piriform and postrhinal cortices, but also receives minor projections from retrosplenial, posterior parietal, and visual association areas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents.

              The origins and terminations of entorhinal cortical projections in the rat were analyzed in detail with retrograde and anterograde tracing techniques. Retrograde fluorescent tracers were injected in different portions of olfactory, medial frontal (infralimbic and prelimbic areas), lateral frontal (motor area), temporal (auditory), parietal (somatosensory), occipital (visual), cingulate, retrosplenial, insular, and perirhinal cortices. Anterograde tracer injections were placed in various parts of the rat entorhinal cortex to demonstrate the laminar and topographical distribution of the cortical projections of the entorhinal cortex. The retrograde experiments showed that each cortical area explored receives projections from a specific set of entorhinal neurons, limited in number and distribution. By far the most extensive entorhinal projection was directed to the perirhinal cortex. This projection, which arises from all layers, originates throughout the entorhinal cortex, although its major origin is from the more lateral and caudal parts of the entorhinal cortex. Projections to the medial frontal cortex and olfactory structures originate largely in layers II and III of much of the intermediate and medial portions of the entorhinal cortex, although a modest component arises from neurons in layer V of the more caudal parts of the entorhinal cortex. Neurons in layer V of an extremely laterally located strip of entorhinal cortex, positioned along the rhinal fissure, give rise to the projections to lateral frontal (motor), parietal (somatosensory), temporal (auditory), occipital (visual), anterior insular, and cingulate cortices. Neurons in layer V of the most caudal part of the entorhinal cortex originate projections to the retrosplenial cortex. The anterograde experiments confirmed these findings and showed that in general, the terminal fields of the entorhinal-cortical projections were densest in layers I, II, and III, although particularly in the more densely innervated areas, labeling in layer V was also present. Comparably distributed, but much weaker projections reach the contralateral hemisphere. Our results show that in the rat, hippocampal output can reach widespread portions of the neocortex through a relay in a very restricted part of the entorhinal cortex. However, most of the hippocampal-cortical connections will be mediated by way of entorhinal-perirhinal-cortical connections. We conclude that, in contrast to previous notions, the overall organization of the hippocampal-cortical connectivity in the rat is largely comparable to that in the monkey.
                Bookmark

                Author and article information

                Journal
                Annals of the New York Academy of Sciences
                Wiley
                00778923
                17496632
                June 2000
                January 25 2006
                : 911
                : 1
                : 1-24
                Article
                10.1111/j.1749-6632.2000.tb06716.x
                10911864
                7cb71637-9f96-41c6-bb22-7b563afed9ee
                © 2006

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article