4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discovering Collective Variables of Molecular Transitions via Genetic Algorithms and Neural Networks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the continual improvement of computing hardware and algorithms, simulations have become a powerful tool for understanding all sorts of (bio)molecular processes. To handle the large simulation data sets and to accelerate slow, activated transitions, a condensed set of descriptors, or collective variables (CVs), is needed to discern the relevant dynamics that describes the molecular process of interest. However, proposing an adequate set of CVs that can capture the intrinsic reaction coordinate of the molecular transition is often extremely difficult. Here, we present a framework to find an optimal set of CVs from a pool of candidates using a combination of artificial neural networks and genetic algorithms. The approach effectively replaces the encoder of an autoencoder network with genes to represent the latent space, i.e., the CVs. Given a selection of CVs as input, the network is trained to recover the atom coordinates underlying the CV values at points along the transition. The network performance is used as an estimator of the fitness of the input CVs. Two genetic algorithms optimize the CV selection and the neural network architecture. The successful retrieval of optimal CVs by this framework is illustrated at the hand of two case studies: the well-known conformational change in the alanine dipeptide molecule and the more intricate transition of a base pair in B-DNA from the classic Watson–Crick pairing to the alternative Hoogsteen pairing. Key advantages of our framework include the following: optimal interpretable CVs, avoiding costly calculation of committor or time-correlation functions, and automatic hyperparameter optimization. In addition, we show that applying a time-delay between the network input and output allows for enhanced selection of slow variables. Moreover, the network can also be used to generate molecular configurations of unexplored microstates, for example, for augmentation of the simulation data.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          A smooth particle mesh Ewald method

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improved side-chain torsion potentials for the Amber ff99SB protein force field

            Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The perceptron: a probabilistic model for information storage and organization in the brain.

                Bookmark

                Author and article information

                Journal
                J Chem Theory Comput
                J Chem Theory Comput
                ct
                jctcce
                Journal of Chemical Theory and Computation
                American Chemical Society
                1549-9618
                1549-9626
                04 March 2021
                13 April 2021
                : 17
                : 4
                : 2294-2306
                Affiliations
                [1]Van ’t Hoff Institute for Molecular Sciences, AI4Science Laboratory, and Amsterdam Center for Multiscale Modeling, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
                Author notes
                Article
                10.1021/acs.jctc.0c00981
                8047796
                33662202
                7cd5be16-2e1c-4e89-9b55-06b862da6d81
                © 2021 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 23 September 2020
                Categories
                Article
                Custom metadata
                ct0c00981
                ct0c00981

                Computational chemistry & Modeling
                Computational chemistry & Modeling

                Comments

                Comment on this article